

PROPERTIES

SAMPLE

McGRAW PUBLISHING COMPANY NEW YORK

LIBRARY of the

UNIVERSITY OF CALIFORNIA.

0

Class

25 jens

PROPERTIES

OF

STEEL SECTIONS

A REFERENCE BOOK FOR

STRUCTURAL ENGINEERS AND ARCHITECTS

INCLUDING TABLES OF MOMENTS OF INERTIA AND RADII OF GYRATION OF BUILT SECTIONS, EXAMPLES OF SECTIONS SELECTED FROM MONUMENTAL STRUC-TURES, UNIT STRESSES, SAFE LOADS FOR COLUMNS, PLATE GIRDER DESIGN, DESIGN IN TIMBER, ETC., WITH ONLY SUFFICIENT TEXT TO EXPLAIN THEIR APPLICATION

BY

JOHN C. SAMPLE, C.E., M. Arch.

Architectural Engineer, New York

NEW YORK McGRAW PUBLISHING COMPANY 114 Liberty Street 1905

GENERAL

Copyright, 1905 by the McGRAW PUBLISHING COMPANY New York

PREFACE

BRAR

UN

23

THERE is a tendency at the present time to call for designs to be submitted on short notice. Should the design be properly made, it requires rapid and often laborious calculations. It is hoped the designer will be able to select directly from the tables here given such sections as will meet his special requirements, thus saving the energy ordinarily spent in preliminary figuring for more important parts of design.

A portion of the material here presented was originally prepared for the author's own use as designer for a structural steel plant. When it was decided to publish the tables additional sections were included. The aim has been to cover the particular field as thoroughly as possible without producing too large a volume. It has not been considered to be within the scope of this book to treat the subjects involved from a theoretical standpoint, only sufficient text being presented to explain the application of the tables.

All values have been calculated and checked independently, and may be relied upon as correct.

Sufficient time has been taken in preparing these tables to permit the author to add such sections as are in use. He has aimed to confine himself to those sections which are necessary to good design and such shapes as are carried in stock by most large structural steel plants, it being the desire to avoid unnecessary refinements.

Common usage will account for the appearance of some of these sections.

Properties of patented sections are omitted. They may be obtained by applying to the manufacturer.

Where possible all controverted points have been avoided. There is a diversity of practice as to how much the back to back of angles should exceed the width of the plate for plate girders and columns, the practice being about equally divided between $\frac{1}{4}$ " and $\frac{1}{2}$ ". The author has used $\frac{1}{4}$ " for all sections with less than 42" plates, since this is on the safe side for those using $\frac{1}{2}$ ". Where cover plates are not used, it is unnecessary to chip the web plate, and it is seldom necessary to chip where cover plates are used unless it be for very long web plates.

It is not intended to recommend any particular set of specifications, or to present a text on design in steel. With the exception of the chapter giving safe loads of columns, the material is general and capable of being applied to any specification.

The author acknowledges his gratitude to those who have assisted him in pro-

100005

PREFACE

viding material for the chapter on Monumental Structures, pages 56 to 66. He will appreciate suggestions tending to add to the value of future editions of the book. Chapters will be revised at intervals determined by the advance in the particular subject.

Special acknowledgment is due Mr. H. R. Bradley for carefully checking all the material.

iv

CONTENTS

1	D		~	-
ы	Ŀ.,	л	G	E.

MOMENT	OF INERTIA AND RADII OF GYRATION —										
	Explanatory notes and examples of application										
TABLE NO. I	Two angles, unequal legs, long legs outstanding										
2	" equal legs										
3	" unequal legs, short legs outstanding										
4	" "Star Struts," equal legs										
5	" " unequal legs										
6	Four angles, Axis AA, unequal legs, long legs outstanding 12										
7	" " equal legs										
8	" " unequal legs, short legs outstanding 16										
9	" Axis BB, unequal legs, long legs outstanding 17										
10	" equal legs										
II	" " unequal legs, short legs outstanding 22										
I 2	Moment of Inertia of one plate, Axis AA										
13	" of one plate, Axis BB										
14	" of two cover plates for angle columns										
15	" of two cover plates for zee-bar columns 28										
16	Two Angles and one plate, T-shaped section										
17	Four zee-bars and one plate										
- 18	Two channels laced, flanges in										
19	" " flanges outstanding										
20	" " (flanges outstanding) and one beam 34										
21	" " (flanges in) and one beam										
22	Three beams, H-section										
23	Two channels and two cover plates $\ldots \ldots \ldots \ldots \ldots \ldots 40$										
24	" " one cover plate										
25	One channel and one plate										
26	" and one angle										
27	Four angles, one plate, and one channel 51										
VALUES C	OF COLUMNS FROM LARGE BUILDINGS-										
28	List and properties of sections										
	Columns having one web plate										
	"two web plates										
	" three web plates										
	Miscellaneous types										
	V										

CONTENTS

VALUES O	F TOP CHORDS FROM LARGE BRIDGES -	PAGE
TABLE No. 29	List and properties of sections	55 61 62 63 63
	" " four webs	64
	Miscellaneous types	. 66
UNIT STR	AINS —	
	Strains under dynamic loads	67 68 70
30	Curves derived from compression formulæ, reduced to 16,000 base unit	72
	unit	73
31	Values corresponding to compression formulæ	74
	Curves corresponding to compression formulæ	75
		10
SAFE LOA	DS FOR COLUMNS	. 0
32	I wo angles and an 8-inch plate	78
33	" and a 12-inch plate	81
35	" and an 18-inch plate	82
36	" and a 24-inch plate	83
• 37	Two channels laced	84
STRESS D	UE TO WEIGHT OF SECTION —	
38	Extreme fiber stress due to weight of angles	86
39	AREA OF ONE PLATE	87
40	AREA IN SQUARE INCHES DEDUCTED FOR ONE HOLE	90
NET AREA	A OF ONE ANGLE —	
41	Deducting one, two, and three $\frac{3}{4}$ -inch holes	91
42	" " $\frac{7}{8}$ -inch holes	92
43	""""""I-inch holes	93
NET VALU	JES OF SECTIONS —	
44	Net values of beams	94
45	" channels	95
40	cover plates for beams and channels	90

CONTENTS

	PAGE
PLATE GIRDERS —	
Graphics in design of plate girders	97
Three examples illustrating application of tables	99
Resistance of web plate to bending stress	100
TABLE No 47 Moment of inertia of one web plate for plate girders	102
48 " of four angles deducting one hole	103
49 " " " " two holes	104
50, """""three holes	105
51 " of two cover plates, deducting two holes	106
TIMBER COLUMNS, BEAMS, AND FLOORING	
General notes on strength of timber	110
52 Safe working stresses for various timbers	113
53 Ultimate breaking stresses for various timbers	114
54 Safe loads for columns	115
55 " (uniformly distributed) for beams I inch thick	116
56 " (uniformly distributed) for beams of various thickness .	117
57 Safe bending moments for beams in foot-pounds	119
58 Bending moments in foot-pounds for uniform loading	120

PAGE

General Notes Governing Tables

THE shapes used in the tables throughout are manufactured by the Carnegie Steel Co. as given in the Pocket Companion for 1903. It has been the object to supplement the Pocket Companion and not to include any information given in it.

The values of all sections except for net values of beams, channels, and cover plates, pages 94–96; net sections of angles, pages 91–93; and plate girders, pages 97–109, are based upon their gross area. Should it be required to use net sections in other cases, due allowance must be made for deductions by rivet holes.

The following notation is used throughout :

Areas of sections are square inches in cross-section.

Weights of sections are pounds per lineal foot.

Dimensions are in inches unless noted.

L = unsupported or unbraced length in feet.

l = unsupported or unbraced length in inches.

x = unknown distance in feet to point in question.

w = uniform load in pounds per lineal foot of span.

W =total load in pounds.

P = safe stress in pounds per square inch.

B = bending moment in inch pounds.

R = extreme fiber stress in pounds per square inch.

- b = thickness in inches.
- h = depth in inches.
- A =total area of cross-section in square inches.

I =moment of inertia.

 M_r = moment of resistance in inch pounds.

r = radius of gyration in inches.

e = distance in inches of extreme fiber from neutral axis.

b. to b. = back to back in inches.

C = coefficient of strength for fiber stress of 16,000 pounds per square inch.

S = section modulus.

S and C are with neutral axis perpendicular to web at center.

MOMENTS OF INERTIA AND RADII OF GYRATION OF COLUMNS AND STRUTS

THE values of all sections in this chapter are based on the gross sections, no deductions being made for rivet holes. Bending produces tension in one side of a column and increases the compression in the other, but the tension is only sufficient to reduce the compression, or in rare cases to produce a slight tension. Should such a case be possible that tension determines the section, where the member has a strut action it would be necessary to use the net values of the section.

A column of such proportions should be selected as to be of nearly the same strength about both axes for the particular loading and bracing. Such relative values of l, r, and I should be examined as will show the column weakest.

The application of the tables of Moments of Inertia and Radii of Gyration is shown by the following examples. The sections will be determined in accordance with the requirements of the New York Building Law. The allowable strain in pounds per square inch for compression members, $P = 15,200 - 58 \frac{l}{r}$. The ratio of $\frac{l}{r}$ must not exceed 120.

In each example the unsupported length about both axes is 20 feet. To this maximum ratio of $\frac{l}{r} = 120$, corresponds the minimum value of $r = \frac{l}{120} = \frac{20 \times 12}{120} = 2.0$. The minimum value of r may therefore be determined for this ratio of $\frac{l}{r}$ by pointing off one decimal place in the value of l in feet. By examination of the tables it is seen that a large number of sections have a value of r much greater than 2.0. The sections used in the examples have values of r much greater than 2.0, and it is important to select such sections as will give the greatest value of r for a given area, provided the requirements or conditions will permit the use of such a section.

Let A = required area of column in square inches.

- W =total direct load in pounds.
- B = bending moment in inch pounds.
- P = safe load in pounds per square inch.
- e = distance in inches from the neutral axis to the extreme fiber on the side in which the bending produces compression.

I

MOMENTS OF INERTIA AND RADII OF GYRATION

The values of compound sections may be found by combining the values of elementary parts. This is illustrated by a column shown in the accompanying figure, the values of which are tabulated below. The column is composed of four angles $6 \times 4 \times \frac{5}{8}$, $18\frac{1}{4}'' b$. to b., long legs outstanding, an $18'' \times \frac{1}{2}''$ web plate, and two $14'' \times \frac{5}{8}''$ cover plates.

SECTION.	Area.	TABLE.	I About Axis AA.	TABLE.	I ABOUT AXIS BB.
4 ^{[s} 6×4 × ⁵ / ₈	23.44	6	206.13	9	1,566.08
1 Pl. 18"×1"	9.00	12	.19	13	. 243.00
2 Pls. 14"×5"	17.50	13	285.84	14	1,559.23
Totals	49.94		49 2.1 6		3,368.31
$r = \sqrt{\frac{I}{A}} =$		V	$\sqrt{\frac{492.16}{49.94}} = 3.14$	V	$\frac{\sqrt{3368.31}}{49.94} = 8.21.$

The safe direct load for this column according to the New York Building Law for an unbraced length of 20 feet is

$$W = A\left(15,200 - 58\frac{l}{r}\right) = 49.94\left(15,200 - 58\frac{240}{3.14}\right) = 537,700 \text{ pounds}.$$

General form of Example 1. This form is for direct loading only, *i.e.* the loading is balanced about any horizontal axis through the center of gravity of the column. This is a general case and applicable to all sections. The form becomes

$$A = \frac{W}{P} = \frac{W}{_{15,200} - 58\frac{l}{r}}.$$

General form of Example 2. This form is for combined direct load with eccentric loading or bending. This is a general case and is applicable to all sections. The form becomes

2

MOMENTS OF INERTIA AND RADII OF GYRATION

$$A = \frac{W}{\left(15,200 - 58\frac{l}{r}\right) - \frac{Be}{I}}.$$

Example 1. Required a channel column capable of carrying a direct or balanced load of 230,000 pounds. To obtain the approximate area required, assume an allowable strain of 12,000 pounds per square inch. 230,000 \div 12,000 = 19.2 square inches. From the table 23 the area of two 10" 15-pound channels and two 12" $\times \frac{1}{2}$ " plates = 20.92; the least r = 3.68. Applying the general form,

$$A = \frac{W}{15,200 - 58\frac{l}{r}} = \frac{230,000}{15,200 - 58\frac{240}{3.68}} = \frac{230,000}{11,400} = 20.2.$$

The section assumed has an excessive area of .72 square inch, and is capable of being reduced by approximately that amount.

Example 2. Required a channel column capable of carrying a balanced load of 200,000 pounds, and having in addition a bending of 120,000 inch pounds. To obtain the approximate area required, assume an allowable extreme fiber strain of 10,000 pounds per square inch for the direct load. $200,000 \div 10,000 = 20.0$ square inches. From the table 23 the area of two 10" 15-pound channels and two 12" $\times \frac{1}{2}$ " plates = 20.92; the least r = 3.68. Turn the column so it will most effectively resist the bending, by placing the axis AA parallel to the plane of bending force. The value of I about the axis AA = 464.8. Applying the general form,

$$A = \frac{W}{\left(15,200 - 58\frac{l}{r}\right) - \frac{Be}{l}} = \frac{100,000}{\left(15,200 - 58\frac{240}{3.68}\right) - \frac{120,000 \times 5.5}{464.8}} = \frac{200,000}{10,000} = 20.0$$

square inches required. The section assumed has an excessive area of .92 square inch and is capable of being reduced by approximately that amount.

3

^{*} NOTE: — It will be seen by referring to the table of specifications under the chapter on Unit Strains that the practice varies; some add the total extreme fiber stress due to bending, while others add $\frac{3}{4}$ of the extreme fiber stress, to the direct stress.

TWO ANGLES, UNEQUAL LEGS,

	Torra	SPOTION	Axis BB.				Axis	AA.		
Size.	TOTAL	DECITOR	AXIS	DD.	o'' b.	to b.	<u>∛</u> ′′ b. 1	to b.	$\frac{7}{16}$ " b.	to b.
	Weight.	Area.	I	r	I	r	I	r	I	r
7×33× 3	49.8	14.62	12.16	.01	172.34	3.43	187.21	3.58	180.70	3.60
×₩	46.0	13.50	11.38	.92	158.20	3.42	171.84	3.57	174.20	3.59
$\times \frac{5}{8}$	42.0	12.34	10.56	.93	143.22	3.41	155.55	3.55	157.69	3.57
$\times \frac{9}{16}$	38.0	11.18	9.72	.93	129.06	3.40	140.14	3.54	142.06	3.56
$\times \frac{1}{2}$	34.0	10.00	8.82	.94	114.83	3.39	124.67	3.53	126.38	3.55
$\times \frac{7}{16}$	30.0	8.80	7.90	.95	100.12	3.37	108.68	3.51	110.17	3.54
			1 . 1 . 		o'' b.	to b.	¼″ b.	to b.	$\frac{5}{16}''$ b.	to b.
6×4× 3	47.2	13.88	17.36	1.12	100.07	2.80	116.50	2.00	118.43	2.02
$\times \frac{11}{16}$	43.6	12.82	16.22	1.13	100.04	2.70	106.85	2.80	108.61	2.01
X	40.0	11.72	15.04	1.13	00.44	2.78	06.57	2.87	08.16	2.80
$\times \frac{9}{16}$	36.2	10.62	13.82	1.14	81.43	2.77	86.03	2.86	88.36	2.88
× ł	32.4	9.50	12.54	1.15	72.42	2.76	77.30	2.85	78.56	2.88
$\times \frac{7}{16}$	28.6	8.36	11.20	1.16	63.04	2.75	67.26	2.84	68.36	2.86
$\times \frac{3}{8}$	24.6	7.22	9.80	1.17	54.11	2.74	57.73	2.83	58.67	2.85
5×31× 5	33.6	9.84	9.66	99	52.50	2.31	56.83	2.40	57.96	2.43
$\times \frac{9}{16}$	30.4	8.94	8.90	1.00	47.29	2.30	51.19	2.30	52.20	2.42
$\times \frac{1}{2}$	27.2	8.00	8.10	1.01	42.02	2.20	45.47	2.38	46.37	2.41
$\times \frac{7}{16}$	24.0	7.06	7.26	1.01	36.56	2.28	39.54	2.37	40.33	2.39
X 38	20.8	6.10	6.36	1.02	31.37	2.27	33.92	2.36	34.59	2.38
$\times \frac{5}{16}$	17.4	5.12	5.44	1.03	26.14	2.26	28.26	2.35	28.81	2.37
4×3×9 16	24.6	7.24	5.32	.86	24.29	1.83	26.85	1.93	27.53	1.95
$\times \frac{1}{2}$	22.2	6.50	4.84	.86	21.60	1.82	23.86	1.92	24.46	1.94
$\times \frac{7}{16}$	19.6	5.74	4.36	.87	18.74	1.81	20.70	1.90	21.21	1.92
$\times \frac{3}{8}$	17.0	4.96	3.84	.88	16.05	1.80	17.71	1.89	18.15	1.91
× 5/16	14.2	4.18	3.30	.89	13.40	1.79	14.78	1.88	15.14	1.90
$3 \times 2\frac{1}{2} \times \frac{1}{2}$	17.0	5.00	2.60	.72	9.16	1.35	10.49	1.45	10.84	I.47
$\times \frac{7}{16}$	15.2	4.44	2.36	•73	8.02	1.34	9.18	I.44	9.49	1 .46
$\times \frac{3}{8}$	13.2	3.84	2.08	•74	6.86	1.34	7.84	1.43	8.10	I.45
$\times \frac{5}{16}$	11.0	3.24	1.80	•74	5.64	1.32	6.45	1.41	6.66	1.43
$\times \frac{1}{4}$	9.0	2.62	1.48	.75	4.51	1.31	5.15	1.40	5.32	1.42
$2\frac{1}{2} \times 2 \times \frac{3}{8}$	10.6	3.10	1.02	.58	3.96	1.13	4.65	I.22	4.84	1.25
$\times \frac{5}{16}$	9.0	2.62	.90	.58	3.30	I.I2	3.87	I.22	4.03.	1.24
$\times \frac{1}{4}$	7.4	2.12	.74	·59	2.62	1.11	3.07	1.20	3.20	1.23
$\times \frac{3}{16}$	5.6	1.62	.58	.60	1.96	1.10	2.29	1.19	2.38	1.21

(4)

TABLE 1 (Continued)

LONG LEGS OUTSTANDING

Axis AA.											
1/1 b. 1	to b.	$\frac{5}{8}''$ b.	to b.	₹″ b. 1	to b.	<u>₹</u> " b. 1	to b.	I b. t	o b.		
I	r	I	r	I	r	I	r	I	r		
192.40	3.63	197.71	3.68	203.12	3.73	208.65	3.78	214.30	3.83		
176.59	3.62	181.46	3.67	186.42	3.72	191.50	3.77	196.68	3.82		
159.85	3.60	164.25	3.65	168.74	3.70	173.34	3.75	178.02	3.80		
144.01	3.59	147.97	3.64	152.01	3.69	156.14	3.74	160.36	3.79		
128.10	3.58	131.62	3.63	135.21	3.68	1 38.88	3.73	142.63	3.78		
111.67	3.56	114.73	3.61	117.86	3.66	121.05	3.71	124.32	3.76		
∛″ b. t	o b.	$\frac{7}{16}$ " b.	to b.	1/1 b. 1	to b.	5" b. t	o b.	3" b. 1	to b.		
					1		1				
1 20.38	2.95	122.36	2.97	124.37	2.99	128.47	3.04	1 32.67	3.09		
110.40	2.93	II2.2I	2.96	114.05	2.98	117.80	3.03	121.65	3.08		
99·7 7	2.92	101.41	2.94	103.07	2.97	106.45	3.01	109.93	3.06		
89.80	2.91	91.27	2.93	92.76	2.96	95.80	3.00	98.93	3.05		
79.84	2.90	81.15	2.92	82.47	2.95	85.16	2.99	87.94	3.04		
69.47	2.88	70.60	2.91	71.75	2.93	74.09	2.98	76.50	3.03		
59.62	2.87	60.59	2.90	61.57	2.92	63.57	2.97	65.63	3.02		
59.12	2.45	60.29	2.48	61.48	2.50	63.91	2.55	66.43	2.60		
53.24	2.44	54.29	2.46	55.36	2.49	57.55	2.54	59.81	2.59		
47.29	2.43	48.22	2.46	49.16	2.48	51.11	2.53	53.11	2.58		
41.12	2.41	41.93	2.44	42.75	2.46	44.44	2.51	46.18	2.56		
35.27	2.40	35.96	2.43	. 36.66	2.45	38.11	2.50	39.60	2.55		
29.38	2.40	29.95	2.42	30.53	2.44	31.73	2.49	32.97	2.54		
28.21	1.97	28.92	2.00	29.63	2.02	31.11	2.07	32.64	2.12		
25.07	1.96	25.69	1.99	26.33	2.01	27.64	2.06	29.00	2.11		
21.74	1.95	22.28	1.97	22.83	1.99	23.96	2.04	25.14	2.09		
18.60	1.94	19.06	1.96	19.53	1.98	20.50	2.03	21.51	2.08		
15.52	1.93	15.90	1.95	16.29	1.97	17.10	2.02	17.93	2.07		
11.21	1.50	11.50	1.52	II.07	1.55	12.77	1.60	13.61	1.65		
9.81	1.40	10.14	1.51	10.48	1.54	11.18	1.59	11.91	1.64		
8.38	1.48	8.66	1.50	8.94	1.53	9.54	1.58	10.16	1.63		
6.89	1.46	7.12	1.48	7.35	1.51	7.84	1.56	8.36	1.61		
5.50	1.45	5.68	1.47	5.87	1.50	6.26	1.55	6.67	1.60		
5.03	1.27	5.23	1.30	5.44	1.32	5.87	1.38	6.32	1.43		
4.10	1.26	4.35	1.20	4.52	1.31	4.88	1.36	5.26	1.42		
3.33	I.25	3.46	1.28	3.59	1.30	3.88	1.35	4.18	1.40		
2.47	1.24	2.57	1.26	2.67	1.28	2.88	1.33	3.11	1.38		
		57							-		

TWO ANGLES,

(T)			Aura DD		Axis AA.						
Size.	TOTAL	ECTION.	AXIS	BB'	o" b.	to b.	<u>∛</u> " b. 1	to b.	$\frac{7}{16}''$ b.	to b.	
	Weight.	Area.	I	r	I	r	I	r	I	r	
8×8×1	102.0	30.00	177.96	2.44	346.47	3.40	374.18	3.53	379.01	3.55	
$\times \frac{15}{16}$	96.0	28.24	168.66	2.44	323.29	3.38	349.06	3.52	353-55	3.54	
× 78	90.0	26.46	159.16	2.45	301.58	3.38	325.53	3.51	329.70	3.53	
$\times \frac{13}{16}$	84.0	24.68	149.42	2.46	279.98	3.37	302.13	3.50	305.99	3.52	
$\times \frac{3}{4}$	77.8	22.88	139.48	2.47	258.42	3.36	278.79	3.49	282.34	3.51	
$\times \frac{11}{16}$	71.6	21.06	129.28	2.48	235.90	3.35	254.41	3.48	257.63	3.50	
× 58	65.4	19.22	118.84	2.49	214.42	3.34	231.17	3.47	234.09	3.49	
$\times \frac{9}{16}$	59.0	17.36	108.18	2.50	192.97	3.33	207.97	3.46	210.58	3.48	
$\times \frac{1}{2}$	52.8	15.50	97.26	2.50	171.60	3.33	184.87	3.45	187.19	3.48	
6×6× 3	57.4	16.88	56.30	1.83	109.78	2.55	121.64	2.68	123.73	2.71	
× 11	53.0	15.56	52.38	1.83	100.03	2.54	110.79	2.67	112.69	2.69	
$\times \frac{5}{8}$	48.4	14.22	48.32	1.84	90.88	2.53	100.60	2.66	102.32	2.68	
$\times \frac{9}{16}$	43.8	12.86	44.14	1.85	81.74	2.52	90.44	2.65	91.98	2.67	
$\times \frac{1}{2}$	39.2	11.50	39.82	1.86	72.28	2.51	79.93	2.64	81.28	2.66	
$\times \frac{7}{16}$	34.4	10.12	35.36	1.87	63.25	2.50	69.90	2.63	71.08	2.65	
× 3	29.0	8.72	30.78	1.88	54.23	2.49	59.90	2.62	60.91	2.64	
					o" b. 1	to b.	1/" b. 1	to b.	$\frac{5}{16}''$ b.	to b.	
4×4× §	31.4	9.22	13.32	1.20	27.27	1.72	30.25	1.81	31.04	1.83	
$\times \frac{9}{16}$	28.6	8.36	12.24	1.21	24.48	1.71	27.14	1.80	27.84	1.83	
$\times \frac{1}{2}$	25.6	7.50	II.I2	I.22	21.56	1.70	23.89	1.78	24.51	1.81	
$\times \frac{7}{16}$	22.6	6.62	9.94	1.23	18.85	1.69	20.87	1.78	21.41	1.80	
$\times \frac{3}{8}$	19.6	5.72	8.72	1.23	16.15	1.68	17.87	1.77	18.33	1.79	
$\times \frac{5}{16}$	10.4	4.80	7.42	1.24	13.44	1.67	14.86	1.76	15.24	1.78	
$3 \times 3 \times \frac{1}{2}$	18.8	5.50	4.44	.90	9.20	1.29	10.56	1.39	10.93	1.41	
$\times \frac{7}{16}$	16.6	4.86	3.98	.91	8.00	1.28	9.19	1.37	9.51	1.40	
× 38	14.4	4.22	3.52	.91	6.86	1.28	7.87	1.37	8.14	1.39	
$\times \frac{5}{16}$	12.2	3.56	3.02	.92	5.71	1.27	6.54	1.36	6.77	1.38	
׳	9.8	2.88	2.48	.93	4.51	1.25	5.16	1.34	5.34	1.36	
$2\frac{1}{2} \times 2\frac{1}{2} \times \frac{7}{16}$	13.6	4.00	2.22	•74	4.65	1.08	5.50	1.17	5.73	I.20	
.X 38	11.8	3.46	1.96	•75	3.96	1.07	4.67	1.16	4.86	1.19	
$\times \frac{5}{16}$	10.0	2.94	1.70	.76	3.31	1.06	3.90	1.15	4.06	1.18	
$\times \frac{1}{4}$	8.2	2.38	1.40	•77	2.63	1.05	3.10	1.14	3.23	1.16	
$\times \frac{3}{16}$	6.2	1.80	1.10	.78	1.96	1.04	2.30	1.13	2.39	1.15	
$2 \times 2 \times \frac{5}{16}$	8.0	2.30	.84	.60	1.70	.86	2.08	.95	2.19	.98.	
Xł	6.4	1.88	.70	.61	1.35	.85	1.66	.94	1.75	.96	
$\times \frac{3}{16}$	5.0	1.44	.56	.62	1.03	.85	1.26	.93	1.32	.96	

EQUAL LEGS

	Axis AA.												
$\frac{1}{2}''$ b. 1	to b.	<u></u> §″ b. 1	to b.	$\frac{3}{4}''$ b. 1	to b.	₹″ b. 1	to b.	1" b. 1	to b.				
I	r	I	r	1	r	I	r	I	r				
.0.0			- (-		2.67		0.00						
383.89	3.58	393.83	3.02	276.82	3.07	286 52	3.72	425.07	3.70				
358.10	3.50	307.35	3.01	370.02	3.05	300.52	3.10	390.43	3.75				
333.93	3.55	342.53	3.00	226.02	2.62	224 27	2.68	309.50	3.74				
309.90	3.54	317.00	3.59	320.02	2.62	208 44	2.67	216 21	3.73				
205.93	3.54	293.20	2.50	274.40	3.61	281.20	2.66	288 55	3.72				
227.05	3.52	242.08	2 = 6	240.27	3.60	255.60	3.65	262.08	3.70				
237.03	3.51	218.64	3.50	224.18	3.50	220.86	3.61	235.67	2.68				
180 54	3.50	104.23	3.54	100.24	3.50	204.27	3.63	200.42	2.68				
109.54	3.30	-94.33	5.34	- ,,,- +	5.39		5.05	509.45	3.00				
125.86	2.73	130.21	2.78	134.69	2.82	139.30	2.87	144.05	2.92				
114.62	2.71	118.57	2.76	122.64	2.81	126.84	2.86	131.15	2.90				
104.07	2.71	107.64	2.75	111.33	2.80	115.13	2.85	119.03	2.89				
93.54	2.70	96.74	2.74	100.04	2.79	103.45	2.84	106.95	2.88				
82.66	2.68	85.48	2.73	88.38	2.77	91.38	2.82	94.47	2.87				
72.28	2.67	74.73	2.72	77.27	2.76	79.88	2.81	82.58	2.86				
61.93	2.66	64.02	2.71	66.18	2.75	68.41	2.80	70.71	2.85				
3" b. 1	to b.	$\frac{7}{16}''$ b.	to b.	$\frac{1}{2}''$ b. t	o b.	$\frac{5''}{8}$ b. to b.		$\frac{3}{4}''$ b. to	o b.				
31.85	т.86	32.67	т.88	33.52	1.01	35.26	1.06	37.07	2.01				
28.57	1.85	20.30	1.87	30.06	1.00	31.62	1.04	33.24	1.00				
25.15	1.83	25.70	1.85	26.46	1.88	27.83	1.03	20.26	1.07				
21.06	1.82	22.52	1.84	23.10	1.87	24.20	1.02	25.54	1.06				
18.80	1.81	10.28	1.84	19.77	1.86	20.70	1.91	21.85	1.05				
15.63	180	16.02	1.83	16.43	1.85	17.27	1.90	18.15	1.04				
5.0					Ū		-	. 0					
11.31	1.43	11.70	1.46	12.10	1.48	12.93	1.53	13.81	1.58				
9.83	I.42	10.17	1.45	10.52	1.47	II.24	1.52	I 2.00	1.57				
8.42	I.4I	8.71	1.44	9.00	1.46	9.62	1.51	10.27	1.56				
7.00	1.40	7.24	1.43	7.49	1.45	8.00	1.50	8.54	1.55				
5.52	1.38	5.71	1.41	5.90	1.43	6.31	1.48	6.73	1.53				
5.96	1.22	6.21	1.25	6.46	I.27	6.99	1.32	7.56	1.37				
5.07	I.2I	5.27	1.23	5.49	1.26	5.94	1.31	6.42	1.36				
4.23	I.20	4.40	I.22	4.58	1.25	4.96	1.30	5.36	1.35				
3.36	1.19	3.50	I.2I	3.64	1.24	3.94	1.29	4.25	1.34				
2.49	1.18	2.59	1.20	2.69	I.22	2.91	1.27	3.14	1.32				
						. 0							
2.30	1.00	2.42	1.03	2.54	1.05	2.80	1.10	3.07	1.10				
1.84	.99	1.93	1.01	2.03	1.04	2.23	1.09	2.45	1.14				
1.39	.98	1.40	1.01	1.53	1.03	1.08	60.1	1.85	1.13				

TABLE 3

TWO ANGLES, UNEQUAL

	TOTAL	SPECTION	Avie BB		Axis AA.							
Size.	TOTAL	DECTION	AXIS	DD.	o'' b.	to b.	$\frac{3}{8}$ " b.	to b.	$\frac{7}{16}$ " b.	to b.		
	Weight.	Area.	I	r	I	r	I	r	I	r		
$7\times3\frac{1}{2}\times\frac{3}{4}$	49.8	14.62	71.98	2.22	23.23	1.26	28.51	1.40	29.49	I.42		
$\times \frac{11}{16}$	46.0	13.50	66.94	2.23	21.13	1.25	25.91	1.39	26.80	1.41		
$\times \frac{5}{8}$	42.0	12.34	61.72	2.24	18.86	1.24	23.09	1.37	23.87	1.39		
$\times \frac{9}{16}$	38.0	11.18	56.36	2.25	16.88	1.23	20.62	1.36	21.32	1.38		
$\times \frac{1}{2}$	34.0	10.00	50.82	2.25	14.90	1.22	18.18	1.35	18.79	1.37		
$\times \frac{7}{16}$	30.0	8.80	45.12	2.26	12.85	1.21	15.63	1.33	16.16	1.35		
					o'' b.	to b.	$\frac{1}{4}''$ b.	to b.	$\frac{5}{16}''$ b. to b.			
6×4× 3/4	47.2	13.88	49.02	1.88	33-55	1.55	37.51	1.64	38.57	1.67		
×11	43.6	12.82	45.64	1.89	30.62	1.55	34.22	1.63	35.18	1.66		
$\times \frac{5}{8}$	40.0	11.72	42.14	1.90	27.47	1.53	30.67	1.62	31.53	1.64		
$\times \frac{9}{16}$	36.2	10.62	38.52	1.90	24.65	1.52	27.50	1.61	28.26	1.63		
$\times \frac{1}{2}$	32.4	9.50	34.80	1.91	21.85	1.52	24.35	1.60	25.02	1.62		
$\times \frac{7}{16}$	28.6	8.36	30.92	1.92	18.90	1.50	21.04	1.59	21.62	1.61		
× 38	24.6	7.22	26.94	1.93	16.18	1.50	17.99	1.58	18.48	1.60		
$5\times3\frac{1}{2}\times\frac{5}{8}$	33.6	9.84	24.06	1.56	18.54	1.37	21.03	1.46	21.70	1.49		
$\times \frac{9}{16}$	30.4	8.94	22.06	1.57	16.63	1.36	18.85	1.45	19.45	1.47		
$\times \frac{1}{2}$	27.2	8.00	19.98	1.58	14.72	1.36	16.67	I.44	17.19	1.47		
$\times \frac{7}{16}$	24.0	7.06	17.80	1.59	12.73	1.34	14.39	1.43	14.84	1.45		
× 38	20.8	6.10	15.56	1.60	10.87	1.34	12.28	1.42	12.66	1.44		
$\times \frac{5}{16}$	17.4	5.12	13.20	1.61	9.05	1.33	10.21	1.41	10.52	1.43		
4×3× ⁹ /16	24.6	7.24	11.10	1.24	10.55	1.21	12.20	1.30	12.65	1.32		
$\times \frac{1}{2}$	22.2	6.50	10.10	1.25	9.32	1.20	10.77	1.29	11.16	1.31		
$\times \frac{7}{16}$	19.6	5.74	9.04	1.25	8.03	1.18	9.27	1.27	9.61	1.29		
× 3	17.0	4.96	7.92	1.26	6.86	1.18	7.90	1.26	8.19	1.28		
$\times \frac{5}{16}$	14.2	4.18	6.76	1.27	5.71	1.17	6.57	1.25	6.81	1.28		
$3 \times 2\frac{1}{2} \times \frac{1}{2}$	17.0	5.00	4.16	.91	5.41	1.04	6.43	1.13	6.71	1.16		
$\times \frac{7}{16}$	15.2	4.44	3.76	.92	4.73	1.03	5.61	1.12	5.85	1.15		
× 38	13.2	3.84	3.32	.93	4.02	1.02	4.76	1.11	4.96	I.I4		
$\times \frac{5}{16}$	11.0	3.24	2.84	•94	3.30	1.01	3.90	1.10	4.07	1.12		
× 1/4	9.0	2.62	2.34	•95	2.62	1.00	3.09	1.09	3.23	1.11		
$2\frac{1}{2} \times 2 \times \frac{3}{8}$	10.6	3.10	1.82	.77	2.06	.82	2.56	.91	2.70	.93		
$\times \frac{5}{16}$	9.0	2.62	1.58	.78	1.72	.81	2.13	.90	2.24	.93		
$\times \frac{1}{4}$	7.4	2.12	1.30	.78	1.36	.80	1.68	.89	1.77	.91		
$\times \frac{3}{16}$	5.6	1.62	1.02	•79	1.00	•79	1.23	.87	1.30	.90		
			1									

Å

Axis AA.											
$\frac{1}{2}''$ b.	to b.	5″ b.	to b.	3″ b.	to b.	$\frac{7}{8}''$ b.	to b.	1" b.	to b.		
I	r	I	r	I	r	I	r	I	r		
30.50	I.44	32.60	1.40	34.82	1.54	37.15	1.50	30.60	1.55		
27.72	1.43	20.62	1.48	31.64	1.53	33.76	1.58	35.08	1.63		
24.60	I.4I	26.30	1.46	28.18	1.51	30.07	1.56	32.06	1.61		
22.05	1.40	23.56	1.45	25.16	1.50	26.84	1.55	28.61	1.60		
10.43	1.30	20.76	1.44	22.16	1.40	23.64	1.54	25.20	1.50		
16.70	1.38	17.83	1.42	19.04	1.47	20.31	1.52	21.65	1.57		
311 h	toh	7 // b	toh	1// b	tob	5// h	to h	3// b	toh		
<u>s</u> D.	10	<u>16</u> D.	10 0.	2 0.		<u>-</u> <u>s</u> D.	10 0.	4 0.	100.		
39.66	1.69	40.77	1.71	41.91	1.74	44.27	1.79	46.74	1.84		
36.17	1.68	37.18	1.70	38.22	1.73	40.37	1.77	42.62	1.82		
32.41	1.66	33.31	1.69	34.24	1.71	36.16	1.76	38.18	1.80		
29.05	1.65	29.85	1.68	30.68	1.70	32.39	1.75	34.19	1.79		
25.71	1.65	26.42	1.67	27.15	1.69	28.66	1.74	30.24	1.78		
22.21	1.63	22.82	1.65	23.44	1.67	24.74	1.72	26.10	1.77		
18.98	1.62	19.49	1.64	20.02	1.67	21.13	1.71	22.28	1.76		
22.39	1.51	23.10	1.53	23.83	1.56	25.34	1.60	26.94	1.65		
20.06	<i>,</i> 1.50	20.70	1.52	21.35	1.55	22.70	1.59	24.12	1.64		
17.74	1.49	18.29	1.51	18.86	1.54	20.06	1.58	21.31	1.63		
15.30	1.47	15.78	1.50	16.27	1.52	17.30	1.57	18.38	1.61		
13.05	1.46	13.46	1.49	13.88	1.51	I4.75 ,	1.55	15.66	1.60		
10.85	1.46	11.18	1.48	11.52	1.50	12.24	1.55	13.00	1.59		
13.11	1.35	13.59	1.37	14.08	1.30	15.10	I.44	16.18	1.50		
11.57	1.33	11.99	1.36	12.42	1.38	13.32	1.43	14.28	1.48		
9.96	1.32	10.32	1.34	10.69	1.36	11.46	1.41	12.28	1.46		
8.48	1.31	8.79	1.33	9.10	1.35	9.76	1.40	10.46	1.45		
7.05	1.30	7.30	1.32	7.56	1.35	8.11	1.39	8.68	1.44		
6.00	0	7.00		= 6-	T OO	8	7	8.04			
0.99	1.10	7.29	1.21	7.00	1.23	0.24	1.20	0.93	1.34		
0.10	1.17	0.30	1.20	0.02	1.22	7.19	1.27	7.78	1.32		
5.17	1.10	5.39	1.10	5.02	1.21	0.09	1.20	0.00	1.31		
4.24	1.14	4.42	1.17	4.00	1.19	4.99	1.24	5.41	1.29		
3.30	1.13	3.50	1.10	3.05	1.18	3.90	1.23	4.29	1.28		
2.85	.96	3.00	.98	3.16	1.01	3.49	1.06	3.85	I.II		
2.36	.95	2.49	.97	2.62	I.00	2.89	1.05	3.19	1.10		
1.86	.94	1.96	.96	2.06	.99	2.28	1.04	2.51	1.09		
1.37	.92	I.44	.94	1.52	.97	I.68	1.02	1.85	1.07		

LEGS, SHORT LEGS OUTSTANDING

(9)

STAR STRUTS

TWO ANGLES, EQUAL LEGS

Size,	TOTAL	Section.	Axis CC.		Axis AA.
-	Weight.	Area.	I	r	
8×8×1	102.0	30.00	282.50	3.07	
$\times \frac{15}{16}$	96.0	28.24	268.02	3.08	
$\times \frac{7}{8}$	90.0	26.46	253.14	3.09	
$\times \frac{13}{16}$	84.0	24.68	237.87	3.10	For I and r about axis AA, see
$\times \frac{3}{4}$	77.8	22.88	222.20	3.12	Table 2.
$\times \frac{11}{16}$	71.6	21.06	206.12	3.13	
$\times \frac{5}{8}$	65.4	19.22	189.61	3.14	
$\times \frac{9}{16}$	59.0	17.36	172.69	3.15	
$\times \frac{1}{2}$	52.8	15.50	155.32	3.17	
$6 \times 6 \times \frac{3}{4}$	57.4	16.88	89.39	2.30	
$\times \frac{11}{16}$	53.0	15.56	83.25	2.31	
$\times \frac{5}{8}$	48.4	14.22	76.89	2.33	
$\times \frac{9}{16}$	43.8	12.86	70.31	2.34	
$\times \frac{1}{2}$	39.2	11.50	63.49	2.35	
$\times \frac{7}{16}$	34.4	10.12	56.44	2.36	
$\times \frac{3}{8}$	29.6	8.72	49.14	2.37	
$4 \times 4 \times \frac{5}{8}$	31.4	9.22	21.04	1.51	
$\times \frac{9}{16}$	28.6	8.36	19.40	1.52	
$\times \frac{1}{2}$	25.6	7.50	17.66	1.53	
$\times \frac{7}{16}$	22.6	6.62	15.82	1.55	
$\times \frac{3}{8}$	19.6	5.72	13.89	1.56	-
$\times \frac{5}{16}$	16.4	4.80	11.85	1.57	•
				*	
$3 \times 3 \times \frac{1}{2}$	18.8	5.50	6.99	1.13	
$\times \frac{7}{16}$	16.6	4.86	6.31	I.I4	
$\times \frac{3}{8}$	14.4	4.22	5-59	1.15	
$\times \frac{5}{16}$	12.2	3.56	4.81	1.16	
$\times \frac{1}{4}$	9.8	2.88	3.97	1.17	
$2\frac{1}{2}\times2\frac{1}{2}\times\frac{7}{16}$	13.6	4.00	3.49	.93	
X 38	11.8	3.46	3.11	•95	
$\times \frac{5}{16}$	10.0	2.94	2.69	.96	
$\times \frac{1}{4}$	8.2	2.38	2.24	•97	
$\times \frac{3}{16}$	6.2	1.80	1.74	.98	
$2 \times 2 \times \frac{5}{16}$	8.0	2.30	1.32	.76	
$\times \frac{1}{4}$	6.4	1.88	1.10	.77	
$\times \frac{3}{16}$	5.0	I.44	.87	.78	
10					

(10)

STAR STRUTS

TWO ANGLES, UNEQUAL LEGS

Size.	TOTAL	SECTION.	Axis	cc.	Axes AA and BB.
	Weight.	Area.	I	r	
6×4× 5/8	40.0	11.72	48.97	2.04	
$\times \overline{16}$ $\times 1$	30.2	10.02	44.05	2.00	
$\begin{array}{c} & & 2 \\ \times \frac{7}{16} \end{array}$	28.6	8.36	36.13	2.08	
$\times \frac{3}{8}$	24.6	7.22	31.52	2.09	
					For I and r about axis AA, see
$4 \times 3 \times \frac{1}{2}$	22.2	6.50	12.32	1.38	Table 3.
$\times \frac{7}{16}$	19.6	5.74	11.07	1.39	
$\times \frac{3}{8}$	17.0	4.96	9.74	1.40	For I and r about axis BB, see
$\times \frac{5}{16}$	14.2	4.18	8.33	1.41	Table 1.
$3 \times 2\frac{1}{2} \times \frac{1}{16}$	15.2	4.44	4.90	1.05	
X3	13.2	3.84	4.35	1.06	
$\times \frac{5}{16}$	II.0	3.24	3.75	1.08	
× ‡	9.0	2.62	3.10	I.00	

7

.

TABLE 6

FOUR

UNEQUAL LEGS,

	-	-			Axis A	AA.		
SIZE.	TOTAL	SECTION.	₹" b. 1	to b.	$\frac{7}{16}''$ b.	to b.	½‴ b. t	ob.
	Weight.	Area.	I	r	Ι	r	I	r
7×31× 3	99.6	29.24	374.43	3.58	379.59	3.60	384.81	3.63
×₩	02.0	27.00	343.67	3.57	348.40	3.59	353.19	3.62
X 5	84.0	24.68	311.10	3.55	315.38	3.57	319.71	3.60
$\times \frac{9}{16}$	76.0	22.36	280.28	3.54	284.13	3.56	288.02	3.59
X 1	68.0	20.00	249.34	3.53	252.75	3.55	256.21	3.58
$\times \frac{7}{16}$	60.0	17.60	217.36	3.51	220.33	3.54	223.34	3.56
			4″ b. t	to b.	<u> </u>	to b.	∛″ b. 1	to b.
6×4× 3	94.4	27.76	233.01	2.90	236.86	2.92	240.77	2.95
× 16	87.2	25.64	213.69	2.89	217.22	2.91	220.79	2.93
$\times \frac{5}{8}$	80.0	23.44	193.14	2.87	196.31	2.89	199.54	2.92
$\times \frac{9}{16}$	72.4	21.24	173.86	2.86	176.71	2.88	179.61	2.91
$\times \frac{1}{2}$	64.8	19.00	154.59	2.85	157.12	2.88	159.69	2.90
$\times \frac{7}{16}$	57.2	16.72	134.53	2.84	136.72	2.86	138.95	2.88
× 38	49.2	14.44	115.46	2.83	117.33	2.85	119.24	2.87
$5\times3\frac{1}{2}\times\frac{5}{8}$	67.2	19.68	113.67	2.40	115.93	2.43	118.23	2.45
$\times \frac{9}{16}$	60.8	17.88	102.37	2.39	104.41	2.42	106.48	2.44
$\times \frac{1}{2}$	54.4	16.00	90.94	2.38	92.74	2.41	94.57	2.43
$\times \frac{7}{16}$	48.0	14.12	79.09	2.37	80.65	2.39	82.24	2.41
× 3	41.6	12.20	67.84	2.36	69.18	2.38	70.54	2.40
$\times \frac{5}{16}$	34.8	10.24	56.52	2.35	57.63	2.37	58.75	2.40
4×3×16	49.2	14.48	53.70	1.93	55.05	1.95	56.43	1.97
× ł	44.4	13.00	47.72	1.02	48.92	1.94	50.14	1.96
$\times \frac{7}{16}$	39.2	11.48	41.39	1.90	42.42	1.92	43.48	1.95
X 3	34.0	9.92	35.42	1.89	36.30	1.91	37.20	1.94
$\times \frac{5}{16}$	28.4	8.36	29.56	1.88	30.29	1.90	31.04	1.93
27217 1	24.0	10.00	20.08	TAF	21.60	T 47	22.42	TEO
×7	30.4	8.88	18.26	1.44	18.08	1.46	10.62	1.40
	26.4	7.68	15.68	T.12	16.21	1.45	16.75	1.49
× 5	22.0	6.48	12.80	1.41	12.22	1.43	12.77	1.46
× 1	18.0	5.24	10.20	1.40	10.64	1.42	10.00	1.45
4		0						+5
$2\frac{1}{2} \times 2 \times \frac{3}{8}$	21.2	6.20	9.29	I.22	9.67	1.25	10.06	1.27
$\times \frac{5}{16}$	18.0	5.24	7.74	I.22	8.05	1.24	8.37	1.26
$\times \frac{1}{4}$	14.8	4.24	6.15	1.20	6.40	1.23	6.65	1.25
$\times \frac{3}{16}$	11.2	3.24	4.58	1.19	4.76	I.2I	4.95	1.24
	1	1			1	1	1	

(12)

TABLE 6 (Continued)

ANGLES, LACED

LONG LEGS OUTSTANDING

			Axis	s AA.			
<u></u> §″ b.	to b.	3/″ b. 1	to b.	₹″ b.	to b.	1" b.	to b.
I	r	I	r	I	r	I	r
395.41	3.68	406.24	3.73	417.30	3.78	428.59	3.83
362.91	3.67	372.85	3.72	382.99	3.77	393-35	3.82
328.50	3.65	337.49	3.70	346.67	3.75	356.05	3.80
295.94	3.64	304.02	3.69	312.29	3.74	320.72	3.79
263.24	3.63	270.42	3.68	277.76	3.73	285.26	3.78
229.46	3.61	235.71	3.66	242.11	3.71	248.64	3.76
$\frac{7}{16}''$ b.	to b.	1/" b. 1	to b.	' <u>5</u> " b.	to b.	3/" b. 1	to b.
244.73	2.07	248.75	2.00	256.04	3.04	265.35	3.00
224.42	2.06	228.10	2.08	235.60	3.03	243.30	3.08
202.81	2.04	206.13	2.07	212.00	3.01	210.86	3.06
182.55	2.03	185.53	2.06	101.61	3.00	107.86	3.05
162.20	2.02	164.03	2.05	170.33	2.00	175.87	3.04
141.21	2.01	143.50	2.03	148.10	2.08	153.00	3.03
121.17	2.00	123.14	2.02	127.14	2.07	131.27	2.02
/			9-	/	97	-37	3.02
120.57	2.48	122.95	2.50	127.83	2.55	132.85	2.60
108.58	2.46	110.72	2.49	115.10	2.54	119.63	2.59
96.43	2.46	98.33	2.48	102.21	2.53	106.22	2.58
83.86	2.44	85.51	2.46	88.88	2.51	92.36	2.56
71.92	2.43	73.33	2.45	76.21	2.50	79.19	2.55
59.90	2.42	61.07	2.44	63.46	2.49	65.94	2.54
57.83	2.00	59.27	2.02	62.22	2.07	65.29	2.12
51.38	1.99	52.65	2.01	55.27	2.06	57.99	2.11
44.56	1.97	45.66	1.00	47.93	2.04	50.29	2.00
38.12	1.96	39.06	1.98	41.00	2.03	43.01	2.08
31.80	1.95	32.58	1.97	34.19	2.02	35.87	2.07
23.17	1.52	23.05	1.55	25.55	1.60	27.23	1.65
20.28	1.51	20.05	1.54	22.35	1.50	23.82	1.64
17.31	1.50	17.88	1.53	10.08	1.58	20.33	1.63
14.23	1.48	14.70	1.51	15.68	1.56	16.72	1.61
11.36	1.47	11.73	1.50	12.51	1.55	13.33	1.60
0		15		5	55	0.00	
10.46	1.30	10.87	1.32	11.73	1.38	12.64	1.43
8.71	1.29	9.05	1.31	9.76	1.36	10.52	I.42
6.91	1.28	7.19	1.30	7.75	1.35	8.35	1.40
5.14	1:26	5-35	1.28	5.77	1.33	6.21	1.38

.

TABLE 7

A-L

FOUR EQUAL

	1				Axis .	AA		-
Size.	TOTAL	SECTION.	38" b.	to b.	7 <u>16</u> " b.	to b.	$\frac{1}{2}''$ b.	to b.
	Weight.	Area.	I	r	I	r	I	r
8×8×1	204.0	00.00	748.37	3.53	758.01	3.55	767.78	3.58
×16	192.0	50.48	098.13	3.52	707.10	3.54	710.19	3.56
× †	180.0	52.92	051.05	3.51	059.40	3.53	007.85	3.55
	100.0	49.30	004.20	3.50	011.98	3.52	019.80	3.54
	155.0	45.70	557.57	3.49	504.07	3.51	571.07	3.54
	143.2	28 44	462.22	3.40	468 18	3.50	521.01	3.52
× 2	130.0	24 72	402.33	3.47	400.10	3.49	474.10	3.51
	105.6	31.00	260 75	3.40	274 28	3.40	270.08	3.50
A 2	10,00	31.00	309.73	3.43	374.30	3.40	379.00	3.20
6×6× 3	114.8	33.76	243.28	2.68	247.47	2.71	251.72	2.73
×H	106.0	31.12	221.58	2.67	225.38	2.60	220.24	2.71
× 5/8	96.8	28.44	201.21	2.66	204.64	2.68	208.14	2.71
$\times \frac{9}{16}$	87.6	25.72	180.88	2.65	183.96	2.67	187.00	2.70
$\times \frac{1}{2}$	78.4	23.00	159.85	2.64	162.56	2.66	165.31	2.68
$\times \frac{7}{16}$	68.8	20.24	139.80	2.63	142.16	2.65	144.56	2.67
$\times \frac{3}{8}$	59.2	17.44	119.80	2.62	121.81	2.64	123.86	2.66
			1/" b.	to b.	$\frac{5}{16}''$ b.	to b.	$\frac{3}{8}''$ b.	to b.
444 5	62.8	78 44	60.50		62.08	1 80	62.60	T 86
4~4~ 8 X 9	57.2	16.44	54.28	1.80	55.60	1.03	57.12	1.85
× 1	51.2	15.00	47.70	1.78	40.02	1.81	50.20	1.83
$\times \frac{7}{16}$	45.2	13.24	41.74	1.78	42.82	1.80	43.02	1.82
$\times \frac{3}{8}$	39.2	11.44	35.75	1.77	36.66	1.70	37.60	1.81
$\times \frac{5}{16}$	32.8	9.60	29.72	1.76	30.48	1.78	31.25	1.80
avay 1								
	37.0	11.00	21.12	1.39	21.80	1.41	22.02	1.43
	33.2	9.72	10.37	1.37	19.01	1.40	19.07	1.42
× 5	20.0	7 12	13.73	1.3/	10.20	1.39	10.04	1.41
× 1	10.6	5.76	10.22	1.30	10.68	1.30	14.00	1.28
4	- 910	5.70	10132	1.34	10.00	1.30	11104	1.30
$2\frac{1}{2}\times2\frac{1}{2}\times\frac{7}{16}$	27.2	8.00	10.99	1.17	11.45	1.20	11.93	1.22
× 3	23.6	6.92	9:34	1.16	9.73	1.19	10.13	1.21
$\times \frac{5}{16}$	20.0	5.88	7.80	1.15	8.12	1.18	8.46	1.20
$\times \frac{1}{4}$	16.4	4.76	6.20	1.14	6.45	1.16	6.72	1.19
$\times \frac{3}{16}$	12.4	3.60	4.59	1.13	4.78	1.15	4.97	1.18
$2 \times 2 \times \frac{5}{16}$	16.0	4.60	4.16	.95	4.38	.98	4.61	1.00
× ł	12.8	3.76	3.32	.94	3.40	.96	3.67	.99
$\times \frac{3}{16}$	10.0	2.88	2.51	.93	2.64	.96	2.77	.98

TABLE 7 (Continued)

ANGLES, LACED

LEGS

			Axis	AA.			
<u></u> [₹] " b.	to b.	<u></u> ³ / ₄ ^{''} b.	to b.	₹″ b.	to b.	I" b. 1	to b.
I	r	I	r	I	r	I	r
787.67	3.62	808.02	3.67	828.84	3.72 .	850.13	3.76
734.70	3.61	753.65	3.65	773.03	3.70	792.87	3.75
685.06	3.60	702.68	3.64	720.71	3.69	739.16	3.74
635.73	3.59	652.04	3.63	668.74	3.68	685.82	3.73
586.52	3.58	601.52	3.63	616.89	3.67	632.61	3.72
535.14	3.56	548.79	3.61	562.78	3.66	577.09	3.70
486.17	3.56	498.53	3.60	511.20	3.65	524.17	3.69
437.28	3.55	448.37	3.59	459.72	3.64	471.35	3.68
388.66	3.54	398.48	3.59	408.53	3.63	418.84	3.68
260.42	2.78	269.38	2.82	278.60	2.87	288.10	2.92
237.14	2.76	245.29	2.81	253.67	2.86	262.31	2.90
215.29	2.75	222.66	2.80	230.25	2.85	238.07	2.89
193.49	2.74	200.09	2.79	206.89	2.84	213.90	2.88
170.95	2.73	176.77	2.77	182.77	2.82	188.95	2.87
149.47	2.72	154.54	2.76	159.77	2.81	165.15	2.86
128.05	2.71	132.37	2.75	136.83	2.80	141.43	2.85
$\frac{7}{16}$ " b.	to b.	$\frac{1}{2}''$ b.	to b.	5″ b.	to b.	$\frac{3}{4}''$ b. t	o b.
65.34	1.88	67.03	1.91	70.51	1.96	74.14	2.01
58.61	1.87	60.12	1.90	63.24	1.94	66.48	1.99
51.59	1.85	52.91	1.88	55.65	1.93	58.51	1.97
45.05	1.84	46.20	1.87	48.59	1.92	51.08	1.96
38.56	1.84	39.54	1.86	41.58	1.91	43.70	1.95
32.05	1.83	32.86	1.85	34.54	1.90	36.30	1.94
23.40	1.46	24.20	1.48	25.86	1.53	27.61	1.58
20.34	1.45	21.04	1.47	22.49	1.52	24.01	1.57
17.41	I.44	18.01	1.46	19.24	1.51	20.55	1.56
14.48	1.43	14.97	1.45	16.00	1.50	17.08	1.55
II.42	1.41	11.80	1.43	12.61	1.48	13.46	1.53
I2.42	1.25	12.93	1.27	13.99	1.32	15.11	1.37
10.55	1.23	10.98	1.26	11.88	1.31	12.83	1.36
8.80	I.22	9.16	1.25	9.91	1.30	10.71	1.35
6.99	I.2I	7.28	1.24	7.87	1.29	8.51	1.34
5.17	1.20	5.38	I.22	5.82	1.27	6.28	1.32
4.84	1.03	5.08	1.05	5.59	1.10	6.14	1.16
3.86	1.01	4.05	1.04	4.46	1.09	4.90	1.14
2.91	1.01	3.06	1.03	3.36	1.08	3.69	1.13

FOUR ANGLES, LACED

UNEQUAL LEGS, SHORT LEGS OUTSTANDING

	E								A	XIS AA.						
SIZE.	LOTAL	SECTION.	3// b.	to b.	$\frac{7}{16}'' b.$	to b.	1'' b.	to b.	⁵ / b.	to b.	3// b. 1	to b.	^π / ⁸ . b.	to b.	ı'' b.	to b.
	Weight.	Area.	Ι	ч	I	ы	I	4	, I	ч	Ι	r.	Ι	r	I	н
7×3½× 3	9.66	29.24	57.02	1.40	58.98	1.42	61.00	I.44	65.21	I.49	69.64	I.54	74.31	I.59	79.20	1.65
×#	92.0	27.00	51.82	1.39	53.60	1.41	55-43	I.43	59.25	I.48	63.28	I.53	67.52	I.58	79.17	I.63
× ×	84.0	24.68	46.17	1.37	47.75	1.39	49.38	I.4I	52.77	1.46	56.36	1.51	60.15	I.56	64.12	1.61
$\times \frac{9}{16}$	76.0	22.36	41.24	1.36	42.65	1.38	44.09	I.40	47.11	I.45	50.3I	1.50	53.68	I.55	57.23	09.ľ
×	68.0	20.00	36.36	I.35	37.59	1.37	38.86	1.39	41.51	I.44	44.32	I.49	47.29	I.54	50.4I	I.59
$\times \frac{7}{16}$	60.0	17.60	31.27	1.33	32.32	1.35	33.40	I.38	35.67	1.42	38.07	1.47	40.62	1.52	43.30	1.57
			1// b.	to b.	⁵ / _{1δ} '' b.	to b.	3// b. t	to b.	$\frac{7}{16}'' b.$	to b.	1/' b.	to b.	5// b. 1	to b.	3// b.	to b.
6×4× 3	94.4	27.76	75.03	1.64	77.15	1.67	79.32	00.I	81.54	1.71	83.82	1.74	88.55	67.I	93.49	I.84
×H	87.2	25.64	68.44	1.63	70.37	1.66	72.34	1.68	74.36	1.70	76.44	1.73	80.74	1.77	85.24	I.82
X	80.0	23.44	61.35	1.62	63.06	1.64	64.82	1.66	66.63	09.I	68.48	1.71	72.33	1.76	76.35	I.80
$\times \frac{9}{16}$	72.4	21.24	55.00	1.61	56.53	I.63	58.10	1.65	17.92	1.68	61.36	02.1	64.79	1.75	68.38	1.79
×	64.8	19.00	48.70	09.1	50.04	1.62	51.42	1.65	52.84	1.67	54.29	09.I	57.31	I.74	60.48	1.78
$\times \frac{7}{16}$	57.2	16.72	42.08	I.59	43.23	1.61	44.42	I.63	45.63	1.65	46.88	1.67	49.47	1.72	52.20	1.77
×	49.2	I4.44	35-98	1.58	36.95	1.60	37.96	I.62	38.99	I.64	40.05	1.67	42.25	1.71	44-57	1.76
5×3 ¹ × ⁵ / ₈	67.2	19.68	42.06	1.46	43.40	I.49	44.78	1.51	46.20	I.53	47.66	1.56	50.69	1.60	53.87	1.65
$\times \frac{9}{16}$	60.8	17.88	37.70	1.45	38.90	1.47	40.13	I.50	41.39	1.52	42.70	I.55	45.40	I.59	48.25	1.64
×	54.4	16.00	33.34	I.44	34.39	1.47	35-47	I.49	36.58	1.51	37.73	I.54	40.11	I.58	42.62	1.63
$\times \frac{7}{16}$	48.0	14.12	28.78	I.43	29.68	I.45	30.61	1.47	31.57	1.50	32.55	1.52	34.60	1.57	36.76	1.61
X	41.6	12.20	24.56	I.42	25.32	1.44	26.11	I.46	26.92	I.49	27.75	1.51	29.49	I.55	31.33	1.60
$\times \frac{5}{16}$	34.8	10.24	20.42	1.41	21.04	I.43	21.69	1.46	22.36	I.48	23.05	1.50	24.48	1.55	26.00	1.59
		1				1		-		-						

(16)

TABLE 9 (Continued on pp. 18 and 19)

1

FOUR ANGLES, LACED

UNEQUAL LEGS, LONG, LEGS OUTSTANDING

					Axis I	3B.		
Size.	TOTAL	SECTION.	$7\frac{1}{2}^{\prime\prime}$ b.	to b.	8¼‴ b.	to b.	10¼″ b.	to b.
	Weight.	Area.	I	r	I	r	I	r
$7 \times 3^{\frac{1}{2}} \times \frac{3}{4}$	99.6	29.24	266.85	3.02	334.12	3.38	553.71	4.35
$\times \frac{11}{16}$	92.0	27.00	249.83	3.04	312.35	3.40	516.20	4.37
× 58	84.0	24.68	233.00	3.07	290.70	3.43	478.52	4.40
$\times \frac{9}{16}$	76.0	22.36	214.03	3.09	266.64	3.45	437.70	4.42
$\times \frac{1}{2}$	68.0	20.00	194.06	3.12	241.42	3.47	395.22	4.45
$\times \frac{7}{16}$	60.0	17.60	174.20	3.15	216.28	3.51	352.68	4.48
					8½‴ b.	to b.	10‡" b.	to b.
$6 \times 4 \times \frac{3}{4}$	94.4	27.76			313.68	3.36	488.93	4.20
×H	87.2	25.64			203.36	3.38	456.12	4.22
$\times \frac{5}{8}$	80.0	23.44			273.12	3.41	423.15	4.25
$\times \frac{9}{16}$	72.4	21.24			250.61	3.43	387.30	4.27
$\times \frac{1}{2}$	64.8	19.00			227.00	3.46	349.95	4.20
$\times \frac{7}{16}$	57.2	16.72			203.38	3.49	312.45	4.32
× 38	49.2	14.44			177.81	3.51	272.51	4.34
			$7\frac{1}{2}^{\prime\prime}$ b.	to b.	8¼″ b.	to b.	10¼" b.	to b.
$5 \times 3\frac{1}{2} \times \frac{5}{8}$	67.2	19.68	173.61	2.97	217.71	3.33	362.35	4.29
$\times \frac{9}{16}$	60.8	17.88	1 59.99	2.99	200.32	3.35	332.45	4.31
$\times \frac{1}{2}$	54.4	16.00	145.25	3.01	181.58	3.37	300.46	4.33
$\times \frac{7}{16}$	48.0	14.12	1 30.83	3.04	163.20	3.40	268.96	4.36
× 3	41.6	12.20	114.62	3.07	142.77	3.42	234.64	4.39
$\times \frac{5}{16}$	34.8	10.24	97.59	3.09	121.38	3.44	198.90	4.41
			$6\frac{1}{2}''$ b.	to b.	8¼‴ b.	to b.	10¼" b	to b.
$4\times3\times\frac{9}{16}$	49.2	14.48	94.04	2.55	165.95	3.39	275.27	4.36
$\times \frac{1}{2}$	44.4	13.00	85.81	2.57	150.82	3.41	249.49	4.38
$\times \frac{7}{16}$	39.2	11.48	77.63	2.60	135.64	3.44	223.46	4.41
×3	34.0	9.92	68.20	2.62	118.68	3.46	194.96	4.43
$\times \frac{5}{16}$	28.4	8.36	58.43	2.64	101.26	3.48	165.88	4.45
			$5\frac{1}{2}$ " b.	to b.	8¼‴ b.	to b.	10¼″ b	to b.
						1		
$3 \times 2\frac{1}{2} \times \frac{1}{2}$	34.0	10.00	45.20	2.13	119.11	3.45	196.61	4.43
$\times \frac{7}{16}$	30.4	8.88	40.95	2.15	107.07	3.47	176.25	4.45
× 38	26.4	7.68	36.12	2.17	93.73	3.49	153.86	4.48
$\times \frac{5}{16}$	22.0	6.48	31.37	2.20	80.50	3.52	131.63	4.51
× 1	18.0	5.24	25.85	2.22	65.87	3.55	107.43	4.53

(17)

FOUR ANGLES,

1 4	1:	[ABL]	E 9 (C	Continu	ed)					
	-4							FO	UR ANC	LES,
	1							UNEQ	UAL LEGS	LONG
		1				Axis	BB.			
Size.	TOTAL	SECTION.	12¼″ b.	to b.	15¼″ b.	to b.	18¼″ b.	to b.	21¼″ b.	to b.
	Weight.	Area.	I	r	I	r	I	r	I	r
• 7×3 ¹ / ₂ × ³ / ₄	99.6	29.24	831.78	5.33	1358.54	6.82	2016.88	8.31	2806.80	9.80
$\times \frac{11}{16}$	92.0	27.00	774.05	5.35	1262.08	6.84	1871.60	8.33	2602.63	9.82
$\times \frac{5}{8}$	84.0	24.68	715.69	5.39	1164.00	6.87	1723.37	8.36	2393.81	9.85
$\times \frac{9}{16}$	76.0	22.36	653.47	5.41	1060.98	6.89	1569.11	8.38	2177.86	9.87
$\times \frac{1}{2}$	68.0	20.00	589.02	5.43	954.72	6.91	1410.42	8.40	1956.12	9.89
$\times \frac{16}{16}$	00.0	17.00	524.28	5.40	847.08	0.94	1250.28	8.43	1732.08	9.92
			12¼″ b.	to b.	15 ¹ / ₄ " b.	to b.	$18\frac{1}{4}^{\prime\prime}$ b.	to b.	21 ¹ / ₄ " b.	to b.
$6 \times 4 \times \frac{3}{4}$	94.4	27.76	741.27	5.17	1223.88	6.64	1831.40	8.12	2563.85	9.61
$\times \frac{11}{16}$	87.2	25.64	690.21	5.19	1137.50	6.66	1700.17	8.14	2378.22	9.63
$\times, \frac{5}{8}$	80.0	23.44	638.56	5.22	1049.58	6.69	1566.08	8.17	2188.06	9.66
$\times \frac{9}{16}$	72.4	21.24	583.35	5.24	957.06	6.71	1426.36	8.19	1991.24	9.68
$\times \frac{1}{2}$	64.8	19.00	526.08	5.20	861.52	6.73	1282.47	8.22	1788.91	9.70
$\times_{\overline{16}}$	57.2	10.72	408.44	5.29	705.14	0.70	1137.08	8.25	1584.25	9.73
ך	49.2	14.44	407.01	5.31	004.91	0.79	987.00	8.27	1374.00	9.75
	·		12¼″ b.	to b.	15¼″ b.	to b.	18¼″ b.	to b.	21¼″ b.	to b.
$5 \times 3\frac{1}{2} \times \frac{5}{8}$	67.2	19.68	546.36	5.27	896.17	6.75	1334.55	8.23	1861.48	9.73
$\times \frac{9}{16}$	60.8	17.88	500.35	5.29	819.24	6.77	1218.59	8.26	1698.40	9.75
$\times \frac{1}{2}$	54.4	16.00	451.34	5.31	737.66	6.79	1095.98	8.28	1526.30	9.77
$\times \frac{7}{16}$	48.0	14.12	402.96	5.34	656.91	6.82	974.40	8.31	1355.43	9.80
× 8 × 5	41.0	12.20	350.91	5.30	571.00	0.84	840.10	8.33	1170.05	9.82
×16	34.8	10.24	290.90	5.30	482.29	0.80	713.77	8.35	991.32	9.84
			12¼″ b.	to b.	15¼″ b.	to b.	18¼″ b.	to b.	21 ¹ / ₄ b.	to b.
$4\times3\times^{9}_{16}$	49.2	14.48	413.56	5.34	675.28	6.83	1002.17	8.32	1394.21	9.81
$\times \frac{1}{2}$	44.4	13.00	374.16	5.36	609.92	6.85	904.17	8.34	1256.93	9.83
$\times \frac{7}{16}$	39.2	11.48	334.24	5.40	543.47	6.88	804.35	8.37	1116.89	9.86
$\times \frac{3}{8}$	34.0	9.92	291.08	5.42	472.47	6.90	698.50	8.39	969.17	9.88
× 16	28.4	8.30	247.23	5.44	400.59	0.92	591.58	8.41	820.18	9.90
			12 ¹ / ₄ " b	. to b.	15¼″ b.	to b.	18¼″ b.	to b.		
$3 \times 2\frac{1}{2} \times \frac{1}{2}$	34.0	10.00	294.11	5.42	477.86	6.91	706.61	8.41		
$\times \frac{7}{16}$	30.4	8.88	263.18	5.44	426.88	6.93	630.55	8.43		
× 3/8	26.4	7.68	229.35	5.46	371.40	6.95	548.00	8.45		
$\times \frac{5}{16}$	22.0	6.48	195.72	5.50	316.15	6.99	465.74	8.48		
× 1	18.0	5.24	159.46	5.52	257.10	7.01	378.44	8.50		

(18)

LACED

LEGS OUTSTANDING

			Axis	BB.	•		
244″ b.	to b.	28¼″ b.	to b.	32 ¹ / ₄ . b.	to b.	36¼″ b.	to b.
I	r	I	r	I	r	I	r
3728.30	11.29	5161.64	13.29	6828.91	15.28	8730.09	17.28
3455.15	11.31	4780.85	13.31	6322.55	15.30	8080.25	17.30
3175.30	11.34	4390.05	13.34	5802.24	15.33	7411.87	17.33
2887.24	11.36	3989.58	13.36	5270.81	15.35	6730.92	17.35
2591.82	11.38	3579.42	13.38	4727.02	15·37	6034.62	17.37
2293.08	11.41	3164.28	13.41	4176.28	15.40	5329.08	17.40
241" b.	to b.	28¼″ b.	to b.	32¼″ b.	to b.	36¼″ b.	to b.
2407.00	11.10	4758 70	12.00	6218 25	15.00	8000 80	17.08
3421.22	11.10	4/50.70	12.11	585155	15.09	7400 17	17.00
31/1.05	11.12	4040.55	12.14	5271.10	15.11	6880 16	17.10
2913.32	11.15	2680.00	12.16	4880.20	15.14	6240.22	17.15
2280.86		3202.12	13.18	4377.28	15.10	5602.64	17.17
2300.00	11.22	2020.26	13.22	3867.62	15.21	1048.72	17.20
1826.11	11.25	2529.91	13.24	3349.24	15.23	4284.08	17.22
	toh	281" h	to h.	-			
241 0	1						
2476.97	11.22	3435.39	13.21				
2258.67	11.24	3130.85	13.23	-			
2028.62	11.26	2810.38	13.25				
1799.99	11.29	2491.59	13.28				
1560.90	11.31	2159.43	13.30				
1314.96	11.33	1818.15	13.32				
24 ¹ / ₄ " b	to b.						
1851.42	11.21						
1668.18	11.32						
1481.00	11.36						
1284.47	11.30						
1086.40	11.30						
100040	11.40						1

TABLE 10

FOUR ANGLES,

EQUAL

						Axis	s BB.			
Size.	IOTAL S	SECTION.			16 <u>1</u> " b.	to b.	18¼″ b.	to b.	21¼″ b.	to b.
	Weight.	Area.	I	r	I	r	I	r	I	r
8×8× 1	204.0	60.00			2430.38	6.36	3093.72	7.18	4444.62	8.61
XH	192.0	56.48			2310.06	6.40	2937.45	7.21	4214.18	8.64
XI	180.0	52.02			2170.25	6.42	2768.94	7.23	3068.37	8.66
×13	168.0	49.36			2046.31	6.44	2598.06	7.25	3719.77	8.68
× 3	155.6	45.76			1909.89	6.46	2423.00	7.28	3465.64	8.70
×H	143.2	42.12			1774.88	6.49	2249.39	7.3I	3212.88	8.73
× 58	130.8	38.44			1630.76	6.51	2065.16	7.33	2946.78	8.76
$\times \frac{9}{16}$	118.0	34.72			1483.00	6.54	1876.57	7.35	2674.96	8.78
$\times \frac{1}{2}$	105.6	31.00			1332.95	6.56	1685.44	7.37	2400.15	8.80
			12½″′b.	to b.	15¼″ b.	to b.	18¼″ b.	to b.	21¼″ b.	to b.
6×6× 3	114.8	33.76	787.16	4.82	1265.08	6.12	1033.02	7.57	2752.78	0.02
×#	106.0	31.12	734.04	4.86	1178.80	6.15	1707.40	7.60	2555.05	0.06
× 5	06.8	28.44	677.68	4.88	1084.06	6.18	1651.01	7.62	2346.84	0.08
X 9	87.6	25.72	618.41	4.00	988.15	6.20	1502.42	7.64	2132.43	0.11
XA	78.4	23.00	559.99	4.93	892.53	6.23	1354.48	7.67	1010.04	9.14
$\times \frac{7}{16}$	68.8	20.24	497.14	4.96	790.88	6.25	1198.62	7.70	1697.43	9.16
× 38	59.2	17.44	432.20	4.98	686.26	6.27	1038.64	7.72	1469.50	9.18
		12			01// 1			44.1		
					8 ½ ′ D. 1	to b.	10 ⁴ D.	το ο.	124" D.	to b.
4×4× 5/8	62.8	18.44			194.82	3.25	306.39	4.08	468.48	5.04
$\times \frac{9}{16}$	57.2	16.72			.179.00	3.27	280.75	4.10	428.39	5.06
$\times \frac{1}{2}$	51.2	15.00			163.61	3.30	255.69	4.13	389.04	5.09
$\times \frac{7}{16}$	45.2	13.24			146.30	3.32	228.03	4.15	346.26	5.11
X 38	39.2	11.44			128.09	3.35	199.11	4.17	301.73	5.14
$\times \frac{5}{16}$	32.8	9.60	• • •		108.89	3.37	168.82	4.19	255.32	5.16
			$6\frac{1}{2}$ "b.	to b.	8¼″ b.	to b.	10¼″ b.	to b.	12¼″ b.	to b.
3×3× 1/2	37.6	11.00	68.09	2.49	121.17	3.32	202.46	4.29	305.75	5.27
$\times \frac{7}{16}$	33.2	9.72	61.18	2.51	108.43	3.34	180.65	4.3I	272.31	5.29
× 3	28.8	8.44	54.05	2.53	95.37	3.36	158.41	4.33	238.34	5.31
$\times \frac{5}{16}$	24.4	7.12	46.37	2.55	81.48	3.38	134.95	4.35	202.66	5.33
$\times \frac{1}{4}$	19.6	5.76	38.41	2.58	67.12	3.41	110.72	4.38	165.84	5.37
			$5\frac{1}{2}$ b.	to b.	8¼″ b.	to b.	10¼" b.	to b.	12 ¹ / ₄ b.	to b.
21×21×7	27.2	8.00	35.40	2.11	03.05	3.43	155.47	4.41	232.00	5.40
×3	23.6	6.92	31.32	2.13	82.28	3.45	135.77	4.43	203.10	5.42
× 5	20.0	5.88	27.16	2.15	70.77	3.47	116.46	4.45	173.91	5.44
$\times \frac{1}{4}$	16.4	4.76	22.42	2.17	57.99	3.49	95.16	4.47	141.86	5.46
$\times \frac{3}{16}$	12.4	3.60	17.48	2.20	44.68	3.52	73.01	4.50	108.54	5.49

LACED

LEGS

			Axi	s BB.			
24 ¹ / ₄ " b.	to b.	28¼″ b.	to b.	32¼″ b.	to b.	36¼″ b.	to b.
I ···	r	I	r	I	r	I	r
6065.52	10.05	8646.72	12.00	11707.92	13.97	15240.12	15.04
5745.07	10.00	8181.61	12.04	11070.00	14.00	14410.23	15.97
5405.94	10.11	7693.15	12.06	10403.71	14.02	13537.63	15.99
5063.59	10.13	7200:88	12.08	9733.05	14.04	12660.10	16.02
4714.20	10.15	6699.27	12.10	9050.42	14.06	11767.65	16.04
4365.92	10.18	6198.14	12.13	8367.32	14.09	10873.46	16.07
4001.38	10.20	5676.60	12.15	7659.33	14.12	9949.59	16.09
3629.59	10.22	5145.46	12.17	6939.10	14.14	9010.49	16.11
3254.35	10.25	4610.29	12.20	6214.23	14.16	8066.17	16.13
24 ¹ / ₄ " b.	to b.	28¼″ b	to b.	32¼″ b.	to b.	36¼″ b.	to b.
3725.56	10.50	5257.50	12.48	7050.70	14.46	0131.80	16.45
3454.54	10.54	4870.50	12.51	6535.42	14.40	8440.30	16.48
3160.75	10.56	4466.05	12.53	5989.86	14.51	7741.20	16.50
2878.10	10.58	4052.56	12.55	5432.70	14.53	7018.50	16.52
2588.89	10.61	3641.83	12.58	4878.77	14.56	6200.71	16.55
2287.33	10.63	3215.53	12.60	4305.66	14.59	5557.71	16.57
1978.83	10.65	2780.02	12.63	3720.74	14.61	4800.97	16.59
15 ¹ / ₄ " b.	to b.	18¼″ b.	to b.	21 ¹ / ₄ " b.	to b.	24 ¹ / ₄ b.	to b.
780.76	6 51	1176.02	7.00	1654.27	0.47		10.06
712.55	6.52	1071.04	8.01	1054.27	9.47	2215.49	10.90
645.31	6.56	060.00	8.04	1260.26	9.49	1810.14	11.01
573.26	6.58	850.84	8.06	1206.00	0.54	1611.74	11.03
408.55	6.60	746.86	8.08	1046.64	0.56	1307.01	11.05
421.06	6.62	630.01	8.10	882.15	9.59	1177.50	11.07
	4- 1		4. 1				
151 D	. to D.	184 b.	to D.				
501.93	6.75	747.62	8.24				
446.25	6.78	663±93	8.27				
389.88	6.80	579.40	8.29				
330.93	6.82	491.23	8.31				
270.13	6.85	400.33	8.34				

TABLE 11

11

FOUR ANGLES, LACED

UNEQUAL LEGS, SHORT LEGS OUTSTANDING

	E									Ax	cts BB.							
SIZE.	SECT	TION.			14 ¹ /2′ b.	to b.	18¼'' b.	to b.	21¼" b.	to b.	24 ¹ /' b.	to b.	28 [‡] " b.	to b.	324"' b.	to b.	36 [‡] ″ b.	to b.
	Wgt.	Area.	I		1	1	I	r	I	h	I	H.	I	н	I	н	I	r
7×3½× ¾ ×¼₺	99.6 02.0	29.24	•••		770-77	5.13 5.16	1381.25 1283.42	6.87 6.89	2017.66 1872.70	8.31 8.33	2785.65 2583.47	9.76 9.78	4014.31 3720.17	11.72 11.74	5476.90 5072.87	13.69 13.71	7173.40 6641.57	15.66 15.68
, oxior 5	84.0	24.68	•	•	663.99	5.19	1183.89	6.93	1724.75	8.36	2376.68	9.81	3418.66	22.11 77.11	4658.09	13.74	6094.96	15.71
× 16 × .2	70.0	22.30	•••	• •	000.05 547.21	5.21	1079.30 971.52	0.95 6.97	1570.72 1412.22	0.30 8.40	1942.92	9.04	3100.53	11.81 18.11	4233.23 3798.12	13.78 13.78	4965.72	15:76
× 16	0.00	17.00	•	:	487.34	5.20	802.72	2.00	1252.12	o.43	1720.72	60.6	2400.72	11.04	3357.52	13.01	4307.12	15.79
			12 ¹ /' b	to b.	15 ¹ /' b.	to b.	18 ¹ /', b.	to b.	21 ¹ /4 b.	to b.	24 ⁴ ′′ b.	to b.	28 ¹ /' b.	to b.	32 ¹ /' b.	to b.	36¼″ b.	to b.
$\begin{array}{c} 6\times 4\times & \frac{3}{44}\\ \times & \frac{14}{16}\\ \times & \frac{3}{55}\\ \times & \frac{9}{10}\\ \times & 10\end{array}$	94.4 87.2 80.0 72.4	27.76 25.64 23.44 21.24	580.76 541.42 501.71 458.88	4.57 4.60 4.63 4.65	951.58 885.33 818.05 746.70	5.85 5.88 5.91 5.93	1475.83 1371.08 1264.23 1152.28	7.37 7.37 7.37 7.37	2124.99 1972.21 1815.89 1653.44	8.75 8.77 8.80 8.82 8.82 8.82	2899.08 2688.72 2473.03 2250.17	10.22 10.24 10.27 10.29	4125.52 3823.55 3513.29 3194.50 2867.51	12.19 12.21 12.24 12.26	5574.03 5163.49 4741.08 4308.75	14.17 14.19 14.22 14.24 14.24	7244.63 6708.56 6156.39 5592.92 5592.92	16.16 16.18 16.21 16.21 16.25
8833 8134 8833 8134 8833 813	04.0 57.2 49.2	19.00 16.72 14.44	414.40 369.56 322.12	4.70 4.70 4.72	520.57	5.98 5.98 6.00	920.20 799.33	7.42 7.42 7.44	1317.21 1143.08	8.88 8.90	1789.47	10.37 10.37	2536.19 2197.85	12.32 12.34	3416.66 2959.41	14.29 14.32	3836.50	16.28 16.30
			10½" b.	to b.	12 ⁴ /' b.	to b.	154" b.	to b.	18 ¹ /' b.	to b.	21 ¹ / ₄ " b.	to b.	24 ¹ , b.	to b.	284″ b.	to b.	32 ¹ /1 b.	to b.
$\begin{array}{c} 5\times 3\frac{1}{2}\times \frac{5}{8}\times \frac{1}{8}\times \frac{1}{10}\times \frac{1}{10}$	67.2 60.8 54.4 48.0 41.5 34.8	19.68 17.88 16.00 14.12 12.20 10.24	296.14 272.00 246.17 220.63 192.77 163.57	3.88 3.90 3.92 3.95 3.97 4.00	433.47 397.39 358.94 320.89 279.82 277.00	4.69 4.71 4.74 4.77 4.77 4.79 4.79	739.00 676.05 609.26 543.07 472.52 399.35	6.13 6.15 6.17 6.20 6.20 6.22	1133.09 1035.17 931.58 828.79 720.12 607.79	7.59 7.61 7.63 7.66 7.68 7.70	1615.74 1474.75 1325.90 1178.05 1022.62 862.30	9.06 9.08 9.10 9.13 9.16 9.18	2186.95 1994.79 1792.22 1590.85 1380.02 1162.90	10.54 10.56 10.58 10.61 10.61 10.64 10.66	3086.33 2813.34 2525.98 2240.09 1941.95 1635.37	12.52 12.54 12.56 12.60 12.60 12.62 12.64	4143.15 3774.93 3387.74 3387.74 3002.28 2601.48 2189.77	14.51 14.53 14.55 14.58 14.58 14.60 14.60 14.62

(22)
MOMENT OF INERTIA OF ONE PLATE ABOUT AXIS AA

h of in ies.					TI	HICKNE	SS OF	PLATE	ін Інсн	ES.	-		
Dept Plate	1	516	30	$\frac{7}{16}$	$\frac{1}{2}$	9 16	58	11/16	34	$\frac{13}{16}$	78	$\frac{15}{16}$	I
	01	.01	.02	.02	04		.08	TT	TA	18	.22	.27	22
4	TOT	.01	.02	.03	.05	.07			4	.22	.28	.24	•33
5		.02	.02	.04	.05	.07	12	114	21	.27	.22	·34	-42
0	.01	.02	.03	.04	.00	.09	T.4	.10	25	27	•33	48	.50
	.01	.02	.03	.05	.07	.10	1.14	.19	.23	.31	.39	.40	.50
l °	.01	.02	.04	.00	.00	.12	.10	.22	.20	.30	•45	.55	.07
9	.01	.02	.04	.00	.09	.13	.10	•24	•32	.40	.50	.02	•75
10	.01	.03	.04	.07	.10	.15	.20	.27	•35	•45	.50	.09	.03
				08		-6				1.0	6-	-6	
II	.01	.03	.05	.00	.11	.10	.22	.30	•39	•49	.01	.70	.92
12	.02	.03	.05	.00	.13	.10	.24	.32	•42	•54	.07	.02	1.00
13	.02	.03	.00	.09	.14	.19	.20	•35	.40	.58	•73	.89	1.08
14	.02	.04	.07	.10	.15	.21	.28	.38	•49	.03	.78	.90	1.17
15	.02	.04	.07	.10	.10	.22	.31	.41	.53	.67	.84	1.03	1.25
1.											0		
16	.02	.04	.07	.11	.17	.24	•33	•43	.56	.72	.89	1.10	1.33
17	.02	.04	.07	.12	.18	.25	.35	.46	.60	.76	•95	1.17	1.42
18	.02	.05	.08	.13	.19	.27	.37	•49	.63	.80	1.00	1.24	1.50
19	.02	.05	.08	.13	.20	.28	•39	.51	.67	.85	1.06	1.30	1.58
20	.03	.05	.09	.14	.21	.30	.41	-54	.70	.89	1.12	1.37	1.67
								1					
21	.03	.05	.09	.15	.22	.31	·43·	.57	•74	•94	1.17	I.44	1.75
22	.03	.06	.10	.15	.23	.33	.45	.60	.77	.98	1.23	1.51	1.83
23	.03	.06	.10	.16	.24	.34	.47	62	.81	1.03	1.28	1.58	1.92
24	.03	.06	.11	.17	.25	.36	.49	.65	.84	1.07	1.34	1.65	2.00
25	.03	.06	.11	.17	.26	.37	.51	.68	.88	1.12	т.40	1.72	2.08
							1						
26	.03	.07	.11	.18	.27	.39	.53	.70	.91	1.16	1.45	1.79	2.17
27	.04	.07	.12	.19	.28	.40	.55	.73	.95	1.21	1.51	1.85	2.25
28	.04	.07	.12	.20	.29	.42	.57	.76	.98	1.25	1.56	1.92	2.33
20	.04	.07	.13	.20	.30	.43	.59	.79	1.02	1.30	1.62	1.00	2.42
30	.04	.08	.13	.21	.31	.44	.61	.81	1.05	1.34	1.67	2.06	2.50
32	.04	.08	.14	.22	.33	.47	.65	.87	1.12	1.43	1.70	2.20	2.67
34	.04	.00	.15	.24	.35	.50	.60	.02	1.20	1.52	1.00	2.33	2.83
36	.05	.00	.16	.25	.38	-53	.73	.07	1.27	1.61	2.01	2.47	3.00
38	.05	.10	.17	.27	.40	.56	.77	1.03	1.34	1.70	2.12	2.61	3.17
40	.05	.10	.18	.28	.42	.50	.81	1.08	I.4I	1.70	2.22	2.75	3.22
-						.59				19		-15	5.35
42	.05	.11	.18	.20	.44	.62	.85	1.14	1.48	1.88	2.34	2.88	3.50
44	.06	.II	.10	.31	.46	.65	.00	1.10	1.55	1.07	2.16	3.02	3.67
46	.06	.12	.20	.32	.48	.68	.04	1.25	1.62	2.06	2.57	2.16	2.82
48	.06	.12	.21	.32	.50	.71	.08	T. 20	T.60	2.15	2.68	2.20	1.00
50	.07	.12	.22	.35	.52	.74	1.02	1.25	1.76	2.13	2.70	2.30	4.00
54	.07	.14	.24	-35	.54	.80	1.10	1.46	1.00	2.23	2.07	3.43	4.1/
60	.08	.15	.26	.12	.50	.80	1.22	1.40	2.11	2 68	2.25	3.71	4.50
	.00	.13	.20	•42	.03	.09	1.22	1.02	2.11	2.00	3.35	4.12	5.00

(23)

B-----B

MOMENT OF INERTIA OF

h of in e ^s .			THICKN	ESS OF PLAT	E IN INCHES		
Vidtl Plate Inch	4	516	38	7	1/2	19	58
			-	-	-		-
4	1.33	1.67	2.00	2.33	2.67	3.00	3.33
5	2.60	3.20	3.91	4.50	5.21	5.86	6.51
6	4.50	5.63	0.75	7.88	9.00	10.13	11.25
7	7.15	8.93	10.72	12.51	14.29	16.08	17.86
8	10.07	13.33	10.00	18.07	21.33	24.00	26.67
9	15.19	18.98	22.78	20.58	30.38	34.17	37.97
10	20.83	20.04	31.25	30.40	41.67	46.88	52.08
				.0		6	
11	27.73	34.00	41.59	40.53	55.40	02.39	09.32
12	30.00	45.00	54.00	80.10	72.00	01.00	90.00
13	45.77	57.21	08.00	00.10	91.54	102.98	114.43
14	57.17	71.40	05.75	100.04	114.33	128.03	142.92
15	70.31	07.09	105.47	123.05	140.03	150.20	175.78
16	85.33	106.67	128.00	149.33	170.67	192.00	213.33
17	102.35	127.94	153.53	179.12	204.71	230.30	255.89
18	121.50	151.88	182.25	212.63	243.00	273.38	303.75
10	142.90	178.62	214.34	250.07	285.79	321.52	357.24
20	166.67	208.33	250.00	291.67	333-33	375.00	416.67
21	102.04	241.17	280.41	337.64	385.88	434.TT	182.34
22	221.82	277.20	222.75	388.21	442.67	400.12	554 58
2.2	252.48	216.85	380.22	443.50	506.06	570.22	622.70
24	288.00	360.00	432.00	504.00	576.00	648.00	720.00
25	325.52	406.00	488.28	560.66	651.04	732.42	813.80
	000						Ū
26	366.17	457.71	549.25	640.79	732.33	823.88	915.42
27	410.06	512.58	615.09	717.61	820.13	922.64	1025.16
28	457.33	571.67	686.00	800.33	914.67	1029.00	1143.33
29	508.10	635.13	762.16	889.18	1016.21	1143.23	1270.26
30	562.50	703.13	843.75	984.38	1125.00	1265.63	1406.25
32	682.67	853.32	1024.00	1104.67	1365.32	1536.00	1706.67
34	818.82	1022.54	1228.25	1432.06	1637.67	1842.28	2047.08
36	072.00	1215.00	1458.00	1701.00	1044.00	2187.00	2430.00
38	1143.17	1428.06	1714.75	2000.54	2286.33	2572.13	2857.02
40	1332.22	1666.67	2000.00	2333.23	2666.67	3000.00	3333.22
	-000-00					9	0000.00
42	1543.50	1929.38	2315.25	2701.13	3087.00	3472.88	3858.75
44	1774.67	2218.33	2662.00	3105.67	3549.33	3993.00	4436.67
46	2027.83	2534.79	3041.75	3548.71	4055.67	4562.63	5069.58
48	2304.00	2880.00	3456.00	4032.00	4608.00	5184.00	5760.00
50	2604.17	3255.21	3906.25	4557.29	5208.33	5859.38	6510.42
54	3280.50	4100.63	4920.75	5740.88	6561.00	7381.13	8201.25
60	4500.00	5625.00	6750.00	7875.00	9000.00	10125.00	11250.00

(24)

jé:

TABLE 13 (Continued)

ONE PLATE ABOUT AXIS BB

		THICKNES	S OF PLATE IN	INCHES.		
$\frac{1}{16}$	3 4	$\frac{13}{16}$	78	$\frac{15}{16}$	I	16
2 67	4.00	1.22	4.67	5.00	5 22	22
3.07	7.81	8 46	4.07	3.00	5.33	· 33
12.28	12.50	14.62	15.75	16.88	18.00	.05
12.30	13.30	14.03	13.73	26.80	18.00	1.13
19.05	21.44	23.22	23.01	20.00	20.50	1.79
29.33	32.00	34.07	51.33	40.00	42.07	2.07
41.77	45.50	49.30	53.10	50.95	80.75	3.00
57.29	02.50	07.71	72.92	70.13	03.33	5.21
76.26	83.19	90.12	97.05	103.98	110.92	6.93
99.00	108.00	117.00	126.00	135.00	144.00	9.00
125.87	137.31	148.76	160.20	171.64	183.08	11.44
157.21	171.50	185.79	200.08	214.38	228.67	14.29
193.36	210.94	228.52	246.00	263.67	281.25	17.58
,,,,,					, i i i i i i i i i i i i i i i i i i i	
234.67	256.00	277.33	298.67	320.00	341.33	21.33
281.47	307.06	332.65	358.24	383.83	409.42	25.59
334.13	364.50	394.88	425.25	455.63	486.00	30.38
392.96	428.69	464.41	500.14	535.86	571.58	35.72
458.33	500.00	541.67	583.33	625.00	666.67	41.67.
	-					
530.58	578.81	627.05	675.28	723.52	771.75	48.23
610.04	665.50	720.96	776.42	831.88	887.33	55.46
697.07	760.44	823.81	887.18	950.55	1013.92	63.37
792.00	864.00	936.00	1008.00	1080.00	1152.00	72.00
895.18	976.56	1057.94	1139.32	1220.70	1302.08	81.38
1006.96	1098.50	1190.04	1281.58	1373.13	1464.67	91.54
1127.67	1230.19	1332.70	1435.22	1537.73	1640.25	102.52
1257.67	1372.00	1486.33	1600.67	1715.00	1829.33	114.33
1 397.29	1524.31	1651.34	1778.36	1905.39	2032.42	127.03
1546.88	1687.50	1828.13	1968.75	2109.38	2250.00	140.63
0	0	0.6	0			
1877.33	2048.00	2218.07	2389.33	2500.00	2730.07	170.07
2251.79	2456.50	2001.21	2865.92	3070.03	3275.33	204.71
2073.00	2910.00	3159.00	3402.00	3045.00	3888.00	243.00
3143.71	3429.50	3715.29	4001.08	4286.88	4572.07	285.79
3666.67	4000.00	4333.33	4666.67	5000.00	5333-33	333-33
4244.62	4630.50	5016.38	5402.25	5788.12	6174.00	285.88
4880.22	5324.00	5767.67	6211.22	6655.00	7008.67	443.67
5576.54	6082.50	6500.46	7007.42	7604.28	8111.22	506.06
6336.00	6012.00	7488.00	8064.00	8640.00	0216.00	576.00
7161.46	7812.50	8462.54	0114.58	0765.62	10416.67	671.00
0021.28	0841.50	10661.62	11481.75	12201.88	12122.00	820 12
12275 00	12500.00	14625.00	15750.00	16875.00	18000.00	1125.00
12373.00	13500.00	14025.00	13/30.00	100/5.00	10000.00	1123.00

(25)

MOMENT OF INERTIA OF TWO COVER PLATES FOR ANGLE COLUMNS

ABOUT AXIS BB

	I	36.00	12401.06	0053.00	7703.06	5741.06	4458.56	3338.06	2379.56	32.00	11103.17	8847.17	6847.17	5103.17	3963.17	2967.17	2115.17	28.00	9715.27	7741.27	5991.27	4465.27	3467.77	2596.27	1850.77
	15	33.75	11670.77	9295.62	7190.46	5355.31	4156.13	3108.82	2213.39	30.00	10374.02	8262.77	6391.52	4760.27	3694.33	2763.40	1967.46	26.25	9077.27	7229.93	5592.58	4165.24	3232.54	2417.97	1721.53
	1-430	31.50	10855.85	8642.97	6682.10	4973.22	3856.94	2882.41	2049.63	28.00	9649.65	7682.65	5939.65	4420.65	3428.40	2562.15	1821.90	24.50	8443.44	6722.31	5197.19	3868.06	2999.85	2241.88	1594.16
	18	29.25	10046.27	7995.11	96-7710	4594.80	3561.00	2658.82	1888.26	26.00	8930.02	7106.77	5491.52	4084.27	3165.33	2363.39	1678.46	22.75	7813.76	6218.42	4805.08	3573-73	2769.66	2067.97	1468.65
BS.	েৰ	27.00	9242.01	7352.01	5678.01	4220.0I	3268.26	2438.0I	1729.26	24.00	8215.12	6535.12	5047.12	3751.12	2905.12	2167.12	1537.12	21.00	7188.23	5718.23	4416.23	3282.23	2541.98	1896.23	I344.98
JES IN INCH	$\frac{1}{16}$	24.75	8443.07	6713.66	5182.26	3848.85	2978.73	2219.99	1572.62	22.00	7504.95	5967.70	4606.45	3421.20	2647.76	1973.32	1397.89	19.25	6566.83	5221.74	4030.64	2993.55	2316.79	1726.66	1223.15
SS OF PLAT	NO	22.50	7649.41	6080.04	4690.66	3481.29	2692.38	2004.73	1418.32	20.00	6799.48	5404.48	4169.48	3094.48	2393.23	1781.98	1260.73	17.50	5949.54	4728.92	3648.29	2707.67	2094.07	I559.23	1103.14
THICKNE	$\frac{9}{16}$	20.25	6861.03	5451.12	4203.22	3117.31	2409.19	1792.20	1266.33	18.00	6098.69	4845.44	3736.19	2770.94	2141.51	1593.07	1125.63	15.75	5336.36	4239.76	3269.17	2424.58	1873.82	I 393.94	984.93
	1	18.00	16.7700	4826.91	3719.91	2756.91	2129.16	1582.41	1116.66	16.00	5402.58	4290.58	3306.58	2450.58	1892.58	1406.58	992.58	14.00	4727.26	3754.26	2893.26	2144.26	1656.01	1230.76	868.51
	$\frac{7}{16}$	15.75	5300.02	4207.36	3240.70	2400.05	1852.24	1375.31	969.26	14.00	4711.13	3739.88	2880.63	2133.38	1646.44	1222.50	861.56	12.25	4122.24	3272.39	2520.55	1866.70	1440.63	69.690I	753.87
	cajao	I3.50	4527.35	3592.48	2765.60	2046.73	1578.45	16.0711	824.13	12.00	4024.31	3193.31	2458.31	1819.31	1403.06	1040.81	732.50	10.50	3521.27	2794.15	2151.02	1591.90	1227.68	17.019	640.99
	$\frac{5}{16}$	11.25	3759.89	2982.23	2294.57	1696.92	1307.74	969.18	681.25	10.00	3342.12	2650.87	2039.62	1508.37	1162.43	801.50	005.50	8.75	2924.36	2319.51	1784.67	1319.82	1017.13	753.81	529.86
•	-44	PLATES.	• • •		• • •	• • •	• • •		•	PLATES.	• • •	• • •	• • •	• • •	• • •	•	•	PLATES.	• • •	• • •		• • •	• • •	• • •	• • •
DTH OF	d I _M	AREA OF	IS 364	324	284	244	214 ((_'01	₩ 10- 10- 10- 10- 10- 10- 10- 10-	154	AREA OF	16 36 ¹ / ₄		284	244	··· 214	10 ⁴	154	AREA OF	I4 364	324	204	24	214	‡01	154

(26)

TABLE 14 (Continued)

	15 I	2.50 24.00	780.52 8327.38	197.08 6635.38	793.64 5135.38	570.20 3827.38	770.75 2972.38	072.55 2225.38	475-59 I586.38	979.89 IO55.38	8.75 20.00	483.76 6939.48	164.23 5529.48	994.70 4279.48	975.17 3189.48	308.96 2476.98	727.12 1854.48	229.66 1321.98	816.58 879.48	6.88 I8.00	835.39 6245.53	647.81 4976.53	595.23 3851.53	677.65 2870.53	078.06 2229.28	554.41 1669.03	106.69 II 89.78	724.02 701.52
	241	21.00 2	7237.23 7	5761.98 6	4454-73 4	3315.48 3.	2571.30 2	1921.61 2	1366.42 I.	905.73	17.50 I	6031.03 6.	4801.65 5	3712.28 3	2762.90 2	2142.75 2.	1 1601.34 I	II 38.68 I	754.78	15.75 I	5427.92 5	4321.49 4	3341.05 3.	2486.61 2	1928.47 24	1441.21 I	I024.82 I	670.20
	13	19.50	6697.51	5330.08	4118.64	3063.20	2374.00	1772.54	1258.84	832.89	16.25	5581.26	4441.73	3432.20	2552.67	1978.33	1477.12	1049.03	694.07	14.63	5023.13	3997.56	3088.98	2297.40	1780.50	1329.41	944.13	624.67
CHES.	64	18.00	6161.34	4901.34	3785.34	2813.34	2178.84	1625.34	1152.84	761.34	15.00	5134.45	4084.45	3154.45	2344.45	1815.70	1354.45	960.70	634.45	13.50	4621.01	3676.01	2839.01	2110.01	1634.13	1219.01	864.63	10.172
ATES IN INC	16	16.50	5628.71	4475.77	3454.84	2565.90	1985.82	1479.99	1048.41	60.160	13.75	4690.59	3729.81	2879.03	2138.25	1654.85	1233.33	873.68	575.90	12.38	4221.53	3356.83	2591.13	1924.42	1489.37	1109.99	786.31	518.31
VESS OF PLI	acija0	15.00	19.0005	4053.36	3127.11	2320.86	1794.92	I336.48	945-55	622.11	12.50	4249.67	3377.80	2605.92	1934.05	1495.77	1113.74	787.95	518.42	11.25	3824.71	3040.02	2345.33	1740.64	I346.I9	1002.36	91.007	466.58
Тніски	16	13.50	4574.02	3634.08	2802.14	2078.21	1606.13	1194.80	844.22	554.39	11.25	3811.68	3028.40	2335.12	1731.84	1338.44	995.67	703.52	462.00	10.13	34.30.52	2725.56	2101.61	I558.66	1204.60	896.10	633.17	415.80
	-403	12.00	4051.94	3217.94	2479.94	1837-94	1419.44	I054.94	744.44	487.94	10.00	3376.61	2681.61	2066.61	1531.61	1182.86	879.11	620.36	406.61	00.0	3038.95	2413.45	1859.95	1378.45	1064.58	791.20	558.33	365.95
	16	10.50	3533.34	2804.91	2160.47	1600.03	1234.83	916.88	646.17	422.72	8.75	2944.45	2337.42	1800.39	1333.36	1029.02	764.06	538.48	352.27	7.88	2650.01	2103.68	1620.35	I 200.02	926.12	687.66	484.63	317.04
	calac	00.0	3018.23	2394.98	I843.73	I 364.48	1052.30	780.61	549.42	358.73	7.50	2515.19	1995.82	I536.44	1137.07	876.91	650.51	457.85	298.94	6.75	2263.67	1796.24	1382.80	1023.36	789.22	585.46	412.07	269.05
	16 16	7.50	2506.59	1988.15	1529.72	1131.28	871.83	646.12	454.17	295.97	6.25	2088.83	1656.79	1274.76	942.73	726.52	538.44	.378.47	246.64	5.63	1879.94	1491.11	1147.29	848.46	653.87	484.59	340.63	221.97
	4	6.00	1998.41	1584.41	1218.41	900.41	693.4I	513.41	360.41	234.41	5.00	1665.34	I320.34	IOI 5.34	750.34	577.84	427.84	300.34	195.34	4.50	1498.80	1188.30	913.80	675.30	520.05	385.05	270.30	175,80
DTH OP	IM I	A. OF PLS.	12 364	" 324	" 281	" 241	" 214	[*] 18 ¹ / ₄	" I54	" I24	A. OF PLS.	IO 364	" 324	" 284	" 244	" 21 ⁴	" I8 ¹	,, I5 ⁴	" 124	A. OF PLS.	9 364	" 324	" 284	" 244	" 21 ¹ / ₄	₹81 »,	,, I5 ¹ / ₁	" I2

(27)

MOMENT OF INERTIA OF TWO COVER PLATES FOR Z-BAR COLUMNS

ABOUT AXIS BB

Thickness of plate equals thickness of Z-bar

of Z-bar.	kness of for Z-bar eb Plate.	of Cover late.			THICKN	ess of Cov	ER PLATES I	IN INCHES.	
Depth	Thich Metal and W	Width	d.	30	$\frac{1}{2}$	<u>5</u> 8	<u>3</u> 4	<u>7</u> 8	I
6 6 6	314 500 12	17 16 15 14	12 ³ " "	· · · · ·	746.14 702.25 658.36 614.47	950.36 894.45 838.55 782.65	, 1161.84 1093.50 1025.16 956.81	1380.70 1299.48 1218.27 1137.05	1607.03 1512.50 1417.97 1323.44
5 5	ରାଜ ଜାମ	14 13	107 "	332.23 308.50	452.87 420.52	578.59 537-27	709.49 658.81	845.63 785.23	987.11 916.60
5 5	1 2 1 2	14 13	10 <u>1</u> "	310.45 288.27	423.50 393.25	541.47 502.80	664.45 616.99	792.52 735.91	925.75 859.63

TWO ANGLES AND ONE PLATE

TABLE 16

IV

Thickness of plate equals thickness of angles. Plate dropped 3" below back of angles

		.A.	344	2.06	2.01	1.99		2.16	2.11	2.09	2.07		1.78	07.I	I.74	1.72		I.38	I.35	I.33	1.31		I.03	10.1	86.	96.
		Axis A	I	108.01	82.84	71.20		106.82	82.65	70.73	59.70		49.32	42.03	35.33	28.85		26.48	22.38	18.67	15.18	-	IO.22	8.43	6.09	5.16
	pl.		e	5.00	4.95	4.93	pl.	4.99	4.95	4.92	4.89	pl.	4.16	4.13	4.11	4.08	ol.	4.47	4.44	4.42	4.39	pl.	3.65	3.63	3.00	3.58
	18"]	IS BB.	r	5.23	5.24	5.24	18//	5.50	5.51	5.52	5.52	15''	4.57	4.57	4.58	4.58	15'']	4.68	4.68	4.69	4.69	12''	3.74	3.74	3.75	3.76
		AX	1	695.55	562.66	494.78		694.93	561.39	494.17	425.76		323.27	285.04	245.76	205.99		306.25	270.03	232.81	195.33		135.38	116.83	98.33	79.25
		TOTAL	AREA.	25.47	20.50	18.00		22.97	18.50	16.24	13.97		15.50	13.62	11.73	9.81		14.00	12.30	10.59	8.87		69.6	8.34	6.99	5.62
		AA.	34	2.14	2.09	2.07		2.25	2.20	2.18	2.16		I.88	I.85	1.83	1.80		I.45	I.43	1.40	1.38		I.08	1.05	1.03	I.00
		AXIS /	I	107.95	82.82	71.18		106.76	82.62	10.71	59.68		49.29	42.01	35.32	28.84		26.45	22.36	18.65	15.17		10.21	8.42	69.0	5.16
	pl.		U	4.07	4.03	4.01	pl.	3.96	3.92	3.89	3.87	pl.	3.15	3.12	3.10	3.07	pl.	3.37	3.34	3.32	3.30	pl.	2.91	2.89	2.86	2.84
	15''	IS BB.	7	4.22	4.24	4.24	15''	4.45	4.46	4.47	4.47	12''	3.52	3.53	3.53	3.54	12''	3.63	3.63	3.64	3.64	10I	3.04	3.04	3.05	3.06
		AX	Ţ	420.45	340.88	300.05		417.36	337.67	297.56	256.56		173.34	153.09	132.14	06.011		164.32	145.11	125.25	105.20		81.38	70.31	59.27	47.82
		TOTAL	AREA.	23.60	19.00	16.68		21.10	17.00	14.92	12.85		14.00	12.31	10.60	8.87		12.50	10.99	9.46	7.93		8.82	7.59	6.37	5.12
		AA.	34	2.23	2.17	2.15		2.36	2.3I	2.28	2.26		1.95	1.92	1.89	г.87		I.55	I.52	1.50	I.47		1.13	1.11	I.08	1 o6
		AXIS 4	I	107.89	82.78	71.16		106.70	82.59	70.69	59.67		49.27	42.00	35.31	28.84		26.42	22.34	18.64	15.17		10.19	8.41	6.68	5.16
	pl.		e	3.25	3.20	3.19	pl.	3.02	2.98	2.95	2.93	pl.	2.53	2.50	2.48	2.46	ol.	2.38	2.36	2.34	2.31	ol.	2.23	2.21	2.18	2.16
	12''	IS BB.	14	3.28	3.29	3.30	12''	3.4I	3.42	3.43	3.44	10,1	2.83	2.84	2.85	2.85	0, 1	2.59	2.59	2.60	2.60	8//	2.34	2.35	2.36	2.36
		AX	п	233.17	189.72	167.27		223.76	181.51	160.23	I 38.33		I04.43	92.39	79.85	67.11		73.51	65.11	56.31	47.40		43.59	37.72	31.88	25.76
		TorAL.	AREA.	21.72	17.50	15.37		19.22	I 5.50	13.61	11.72		13.00	II.44	9.85	8.25		11.00	9.68	8.34	6.99		7.94	6.84	5.74	4.62
	•S: 40	AGLE REA (V	I4.22	11.50	I0.12		11.72	9.50	8.36	7.22		8.00	2.06	6.10	5.12		6.50	5.74	4.96	4.18		4.44	3.84	3.24	2.62
đ		SIZE OF ANGLES.		6×6× 5	×	$\times \frac{7}{16}$		6×4× 5	× 2	$\times \frac{7}{16}$	rsiae ×		$5 \times 3\frac{1}{2} \times \frac{1}{2}$	₽ ¹ ×	X	$\times \frac{5}{16}$		4×3× 1	$\times \frac{7}{16}$	X	$\times \frac{5}{16}$		$3 \times 2 \frac{1}{2} \times \frac{7}{16}$	X	$\times \frac{5}{16}$	× 4

(29) .

-V

FOUR Z-BARS AND ONE PLATE

d=WIDTH OF PLATE + 1 INCH

		AA.	-	3.63	3.70					3.07	3.10					2.45	2.48	1.00	I.C2	`		~	
	1.	AXIS	I	426.39	426.36					235.66	235.64					118.45	118.44	50.40	59.48				
	Meta	BB.	-	4.73	3.88				Metal	3.86	3.44				Weta	3.86	3.44	3.37	2.96				
	1 8 1/	AXIS	I	724.14	469.13				114	372.86	289.69				11 4	202.78	227.39	187.44	140.39				
			AKEA.	32.35	31.22					25.00	24.50					10.70	19.26	16.50	16.07				
		AA.	ч	3.71	3.77		3.66	3.72		3.15	3.18					2.53	2.55	I.85	I.87				
		Axis	I	409.23	409.21		562.04	561.97		225.16	225.16					112.67	112.67	48.oI	48.00				
Z-BAI	Metal	BB.	H	4.79	3.93	Metal	4.64	3.78	Vietal	3.92	3.50		-		Metal	3.91	3.49	3.39	2.97				
KNRSS OF	1/1	Axis	I	681.58	444.60	1014	903.12	579.20	1. 2 11	349.05	272.54				inja	270.06	210.79	161.58	121.14				
UALS THIC		Apres	· UGWET	29.76	28.76		42.02	40.52		22.74	22.30					17.64	17.27	14.07	13.69				
TR RO		AA.	ы	3.66	3.72		3.73	3.80		3.10	3.13		3.17	3.21		2.48	2.51	I.88	10.1		2.55	2.58	
S OF PLA	1.	AXIS	I	347.00	346.98		555.87	555.82		185.98	185.97		317.82	317.80		89.78	89.77	42.83	42.82		166.87	166.86	•
ICKNES	Meta	BB.	r	4.81	3.95	Metal	4.69	3.84	Metal	3.94	3.52	Metal	3.82	3.40	Metal	3.93	3.51	3.43	3.02	Metal	3.82	3.40	
TH	7." T6"	Axis]	I	599.23	391.45	111/	877.04	566.52	(/ coloc	300.86	235.11	1/ 30 26/1	460.96	357.54	16"1	226.07	176.60	142.85	107.61	1.6	372.48	288.81	
		A DE A		25.94	25.06		39.88	38.50		19.40	19.03		31.56	30.94		14.62	14.31	12.11	11.80		25.58	25.02	
		AA.	ы	3.61	3.67		3.68	3.75		3.05	3.08		3.12	3.15		2.43	2.46	1.83	1.86		2.50	2.53	1.87 1.89
		AXIS	I	287.86	287.86	1.	489.27	489.23	ıl.	149.42	149.41	.1.	275.38	275.37		68.66	68.66	32.30	32.30		141.81	141.80	63.63 63.62
	Metal	BB.	ы	4.83	3.97	Meta	4.71	3.86	Meta	3.96	3.54	Meta	3.84	3.42	Metal	3.95	3.53	3.45	3.04	Metal	3.84	3.42	3.32 2.91
	1 03120	AXIS	I	515.29	337.09	100	800.86	518.08	16"	252.27	197.29	1 <u>6</u>	417.08	323.77	411	181.83	142.16	114.92	80.60	1.1	333.06	258.45	201.82 150.40
		AREA.		22.11	21.36		36.09	34.84		16.IO	I5.79		28.26	27.70		11.64	11.39	9.63	9.38		22.64	22.14	18.26 17.76
911	eld fo	qtp	M	OI			0I	0		00			∞	-	1	00	-	2	0		8	7	0 1
180	1-Z 10	btp d	De	10	0		0	0		n.	n di		ŝ	ານ		4	4	3	2		4	4	3 3

(30)

TWO CHANNELS LACED, FLANGES IN

iii iiii iii iiii iii iii iii iii iii iii iiii iiii iiii iiii iiii iiii iiiiiii iiiiii iiiiiii iiiiiiii iiiiiiiiii iiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	. to b.
	r
15 55 110 32.36 860.4 5.16 588.08 4.27 732.23 4.76 891.67	5.25
" 50 100 29.42 805.4 5.23 540.67 4.29 671.50 4.78 817.04	5.27
" 45 00 26.48 750.2 5.32 490.36 4.30 608.51 4.79 739.91	5.20
" 40 80 23.52 695.0 5.43 437.04 4.31 542.10 4.80 658.93	5.29
" 35 70 20.58 640.0 5.58 381.90 4.31 473.70 4.80 575.80	5.29
" 33 66 19.80 625.2 5.62 366.73 4.30 454.96 4.79 553.00	5.29
	<u> </u>
9" b. to b. 10" b. to b. 11" b	. to b.
12 40 80 23.52 394.0 4.09 348.97 3.85 443.71 4.34 550.20	4.84
" 35 70 20.58 358.6 4.17 309.91 3.88 393.39 4.37 487.15	4.87
" 30 60 17.64 323.4 4.28 268.23 3.90 340.08 4.39 420.75	4.88
" 25 50 14.70 288.0 4.43 223.79 3.90 283.65 4.39 350.80	4.89
" 20.5 41 12.06 256.2 4.61 181.60 3.88 230.39 4.37 285.23	4.86
	. to b.
10 25 50 14.70 182.0 3.52 228.10 3.94 288.81 4.43 356.87	4.93
" 20 40 11.76 157.4 3.66 183.75 3.95 232.44 4.45 287.02	4.94
" 15 30 8.92 133.8 3.87 137.57 3.93 174.24 4.42 215.37	4.91
8" b. to b. 9" b. to b. 10" b	. to b.
9 20 40 11.70 121.6 3.21 142.05 3.48 185.15 3.97 234.13	4.40
15 30 8.82 101.8 3.40 100.40 3.47 138.74 3.97 175.43	4.40
13.25 20.5 7.78 94.6 3.49 93.11 3.40 121.45 3.95 153.62	4.44
8" b. to b. 9" b. to b. 10" b	. to b.
8 16.25 32.5 0.56 70.8 2.80 116.05 3.50 152.27 3.00 102.30	4.40
" 13.75 27.5 8.08 72.0 2.98 98.88 3.50 128.72 3.99 162.60	4.49
" II.25 22.5 6.70 64.6 3.11 81.21 3.48 105.83 3.97 133.79	4.47

(31)

TWO CHANNELS LACED, FLANGES OUTSTANDING

-T TABLE 19

9

		o b.	H	5.30	5.37	5.36	5.36	5.37	5.37	5.28	5.25	5.23	5.24	5.27	5.16	5.16	5.19	5.13	5.13	5.15	5.09	5.09	5.11	o b.	4.07	4.07	4.09	4.05	4.04	4.05			
		9″ b. t	I	941.28	849.78	761.04	675.23	592.66	571.38	654.63	567.00	483.20	403.19	334.42	392.15	312.66	240.17	308.98	232.4I	206.45	247.94	209.73	175.29	7'' b. t	144.12	119.20.	95.27	125.42	62.00I	78.21			
		o b.	۲	4.90	4.88	4.87	4.87	4.87	4.88	4.78	4-75	4.74	4.74	4.77	4.67	4.66	4.69	4.63	4.64	4.66	4.60	4.60	4.62	o b.	3.58	3.57	3.59	3.56	3.54	3.56	3.52	3.52	
		8'' b. t	I	777.12	701.12	627.63	556.85	488.95	471.51	537.69	465.25	396.28	330.75	274.68	320.56	255.52	196.56	252.12	189.72	168.67	202.00	170.89	142.96	6" b. t	111.27	92.00	73.63	96.64	77.59	60.28	65.50	48.44	
		o b.	r	4.41	4.39	4.38	4.38	4.38	4.39	4.29	4.26	4.25	4.25	4.28	4.18	4.17	4.20	4.14	4.14	4.16	4.10	4.10	4.12	o b.	3.09	3.08	3.10	3.06	3.05	3.07	3.02	3.03	3.00
	AA.	7'' b.t	I	629.13	567.18	507.47	450.23	395.54	381.54	432.51	373.79	318.19	265.66	220.96	256.32	204.25	157-41	201.14	151.44	134.77	160.83	136.09	113.97	5" b. t	82.75	68.40	54.85	71.68	57.49	44.73	48.38	35.80	27.87
	AXIS	o b.	н	3.92	3.90	3.89	3.89	3.90	3.90	3.80	3.77	3.76	3.76	3.79	3.68	3.68	3.71	3.64	3.65	3.67	3.61	3.61	3.63	0 b.	2.60	2.59	2.61	2.57	2.56	2.57	2.53	2.54	2.51
		6′′ b. t	I	497.33	447.94	400.54	355.38	312.42	301.47	339.09	292.63	248.92	207.92	173.28	199.43	158.87	122.72	156.04	117.57	104.76	124.45	105.33	88.34	4'' b. t	58.58	48.39	38.91	50.54	40.48	31.56	33.90	25.12	19.46
		o b.	-	3.43	3.42	3.40	3.40	3.4I	3.42	3.31	3.28	3.27	3.27	3.30	3.19	3.19	3.22	3.15	3.16	3.18	3.12	3.12	3.14	o b.	2.11	2.II	2.13	2.09	2.07	2.09	2.04	2.05	2.02
		5" b. t	I	381.71	343.41	306.85	272.28	239.58	231.30	257.43	221.75	188.47	I57-53	131.62	149.90	119.37	92.49	I 16.82	88.11	78.64	92.84	78.61	66.05	3'' b. t	38.75	31.99	25.82	33.22	26.55	20.77	22.08	16.39	12.60
		o b.	4	•	•	•	•	•	•	•	•	•	•	•	2.71	2.70	2.73	2.66	2.67	2.69	2.63	2.63	2.65	o b.	•	•	•	•	•	•	I.56	1.57	I.53
		4" b. t	I	•	•	•	•	•	2 • •	•	• • •	•	•	•	107.71	85.75	66.72	83.48	63.07	56.42	66.02	55.93	47.12	2'' b. t	•	•	•	•	•	•	12.90	10.0	7.28
-	2B.		r	5.16	5.23	5.32	5-43	5.58	5.62	4.09	4.17	4.28	4.43	4.61	3.52	3.66	3.87	3.21	3.40	3.49	2.89	2.98	3.11		2.50	2.59	2.72	2.13	2.2I	2.34	I.83	I.95	I.56
T A	AXIS		I	860.4	805.4	750.2	695.0	040.0	625.2	394.0	358.0	323.4	288.0	250.2	182.0	157.4	133.8	121.6	IOI.8	94.6	79.8	72.0	04.0		54.4	48.4	42.2	34.6	30.2	26.0	17.8	14.8	2.6
	SECTION.	AREA.		32.36	29.42	26.48	23.52	20.58	19.80	23.52	20.58	17.64	14.70	12.06	14.70	94.11	8.92	94.II	8.82	7.78	9.56	8.08	6.7a		8.68	7.20	5.70	7.64	6.18	4.70	5.30	3.90	3.10
There	LOTAL	тны	аw	110.0	100°0	0.00	80.0	20.0	66.0	80.0	20.0	0.00	50.0	41.0	50.0	40.0	30.0	40.0	30.0	20.5	32.5	27.5	22.5		29.5	24.5	19.5	26.0	21.0	10.0I	18.0	13.0	10.5
ZE OF	ANNEL.	THOI	MB	55 .	50	45	40	35	33	40	35	30	25	20.5	25	20	15	20	15	13.25	16.25	13.75	11.25		14.75	12.25	9.75	13	10.5	00	6	6.5	5.25
S	CH	.нтч	DE	15	""	"	,,	3	;;	12	"	;;	"	"	IO	23	"	0	"	33	00	"	3		1	"	"	9	33	"	ŝ	3	4

TABLE 19 (Continued)

TWO CHANNELS LACED, FLANGES OUTSTANDING

		_		-	_	_	_				_	_	_	_		_	_					
	to b.	r	8.87	20.0	0.03	0.03	8.84												,			
	16" b.	I	2543.45	2302.28	2005.00	1033.14	15.47.68															
	to b.	-	8.37	8.35	8.33 0.33	o.33	8.34 8.34	- >														
	15" b.	I	2266.03	2050.65	1839.52	1032.44	1430.90	2														
	to b.	r	7.87	7.85	7.84	7.03	7.85	7.76	7.73	7.71	7.72	7.75			-							
	14" b.1	Ι	2004.79	1813.73	1020.07	1443.51	1210.24	1415.74	1230.09	1050.06	875.65	723.60										
Α.	to b.	ч	7.37	7.35	7.34	7.34	7.35	7.26	7.23	7.22	7.22	7.25										
Axis A	13" b. 1	I	1759.73	1591.52	1427.00	1200.33	1000.87	1240.00	1076.89	919.04	766.46	633.71										
	o b.	ы	6.87	6.86	0.84	0.04	0.85	6.76	6.74	6.72	6.72	6.75	6.65	6.64	6.68							
	12" b. t	I	1530.85	1384.02	1240.70	10.0011	030.40	1076.02	933.98	796.85	664.62	549.84	651.02	519.36	397.76							
	o b.	н	6.38	6.30	0.35	0.35	6.36	6.27	6.24	6.22	6.23	6.26	6.16	6.15	6.18	6.12	6.13	6.14				
	r1" b.1	I	1318.14	1191.23	1007.57	947.20	030.93 800.83	023.80	801.36	683.48	570.12	472.00	557.38	444.58	340.77	440.34	331.02	293.70				
	o b.	5	5.89	5.87	5.05	20.0	5.87	5.77	5.74	5.73	5.73	5.76	5.66	5.65	5.68	5.62	5.63	5.65	o b.	4.57	4.56	4.58
	IO'' b. 1	I	1121.62	1013.15	907.08	805.30	700.05	782.22	679.04	578.93	482.98	400.20	471.00	375.68	288.24	371.72	279.51	248.13	8′′ b. t	181.31	I 50.00	119.76
BCTION.	ARFA.		32.36	29.42	20.48	23.52	10.80	23.52	20.58	17.64	14.70	12.06	14.70	94.II	8.92	94.11	8.82	7.78		8.68	7.20	5.70
TOTAL S	THD	MEI	0.011	0.001	0.00	0.05	66.0	. 80.0	70.0	60.0	50.0	41.0	50.0	40.0	30.0	40.0	30.0	20.5		29.5	24.5	19.5
IZE OF ANNEL.	THO	аW	55	50	45	40	33	40	35	30	25	20.5	25	20	15	20	15	13.25		14.75	I 2.25	9.75
CH CH	.HT9	DE	12	3 3	: 3	3	"	12	"	"	33	"	IO	,,	3	0	99	99		5	,,	33

(33)

TWO CHANNELS (FLANGES OUTSTANDING) AND ONE BEAM

Сна	NNEL.	1	BEAM.	Тота	L SEC.	Axis	BB.	Axis	AA.
DEPTH.	WEIGHT.	DEPTH	WEIGHT.	WEIGHT.	AREA.	I	r	·I	r
15	55	15	42	152.00	44.84	875.02	4.42	2707.73	7.77
"	"	12	31.5	141.50	41.62	869.90	4.57	1746.65	6.48
"	4	10	25	135.00	39.73	867.29	4.67	1243.72	5.60
"	"	9	21	131.00	38.67	865.56	4.73	1026.18	5.15
"	"	8	18	128.00	37.69	864.18	4.79	834.02	4.70
"	"	7	15	125.00	36.78	863.07	4.84	665.33	4.25
"	"	6	12.25	122.25	35.97	862.25	4.90	519.13	3.80
15	50	15	42	142.00	41.00	820.02	4.42	2402.35	7.71
	"	12	31.5	131.50	38.68	814.00	4.50	1500.82	6.43
"	"	10	25	125.00	36.79	812.20	4.70	1135.25	5.55
"	"	9	21	121.00	35.73	810.56	4.76	934.68	5.11
"	"	8	18	118.00	34.75	809.18	4.83	758.02	4.67
"	"	7	15	115.00	33.84	808.07	4.89	úo3.38	4.22
"	"	6	12.25	112.25	33.03	807.25	4.94	469.74	3.77
15	45	15	12	132.00	38.06	764.82	4.43	2281.22	7.65
	"	12	31.5	121.50	35.74	750.70	4.61	1456.50	6.38
u	"	IO	25	115.00	33.85	757.00	4.73	1020.78	5.52
"	"	9	21	111.00	32.70	755.36	4.80	845.94	5.08
"	ic	8	18	108.00	31.81	753.08	4.87	684.53	4.64
"	"	7	15	105.00	30.90	752.87	4.94	543.67	4.10
"	έc	6	12.25	102.25	30.09	752.05	5.00	422.34	3.75
15	40	15	42	122.00	36.00	700.62	4.44	2074.14	7.50
	"	12	31.5	111.50	32.78	704.50	4.64	1316.71	6.34
"	"	IO	25	105.00	30.80	701.80	4.77	027.46	5.48
"	"	0	21	101.00	20.83	700.16	4.84	760.13	5.05
"	"	8	18	08.00	28.85	608.78	4.02	613.75	4.61
"	66	7	15	95.00	27.94	607.67	5.00	486.43	4.17
"	"	6	12.25	92.25	27.13	696.85	5.07	377.18	3.73
15	25	15	42	112.00	33.06	654.62	1.15	1872.66	7.53
"	35	12	21.5	101.50	20.84	640.50	4.67	1181.20	6.20
"	"	10	25	05.00	27.05	646.80	4.81	828.75	5.45
"	"	õ	21	01.00	26.80	645.16	4.00	677.56	5.02
"	"	8	18	88.00	25.01	643.78	4.08	545.85	4.50
"		7	15	85.00	25.00	642.67	5.07	431.74	4.16
"	"	6	12.25	82.25	24.10	641.85	5.15	334.22	3.72
				5	. ,	14-1-5	5-5	001	

TABLE 20 (Continued)

TWO CHANNELS (FLANGES OUTSTANDING) AND ONE BEAM

Сна	NNEL.	E	BEAM.	TOTAL	SEC.	Axis 1	BB.	Axis A	А.
DEFTH.	W EIGHT.	Дертн.	WEIGHT.	WEIGHT.	AREA.	I	r	I	r
15	33	15	42	108.00	32.28	630.82	4.45	1820.21	7.51
	66	12	31.5	97.50	29.06	634.70	4.67	1146.20	6.28
"	"	10	25	91.00	27.17	632.09	4.82	803.25	5.44
	66	9	21	87.00	26.11	630.36	4.91	656.28	5.01
	"	8	18	84.00	25.13	628.98	5.00	528.41	4.59
"	""	7	15	81.00	24.22	627.87	5.09	417.74	4.15
"	"	6	12.25	78.25	23.41	627.05	5.18	323.27	3.72
12	40	12	31.5	111.50	32.78	403.50	3.51	1291.82	6,28
"	**	10	25	105.00	30.89	400.89	3.60	905.43	5.41
"	"	9	21	101.00	29.83	399.16	3.66	739.53	4.98
"	**	8	18	98.00	28.85	397.78	3.71	594.59	4.54
		7	15	95.00	27.94	396.67	3.77	468.71	4.10
"	"	6	12.25	92.25	27.13	395.85	3.82	360.89	3.65
12	35	12	31.5	101.50	29.84	368.10	3.51	1149.78	6.21
**	"	10	25	95.00	27.95	365.49	3.62	801.14	5.35
	"	9	21	91.00	26.89	363.76	3.68	651.90	4.92
"		8	18	88.00	25.91	362.38	3.74	522.15	4.49
66	"	7	15	85.00	25.00	361.27	3.80	409.99	4.05
"	"	6	12.25	82.25	24.19	360.45	3.86	314.43	3.61
12	30	12	31.5	91.50	26.90	332.90	3.52	1012.65	6.14
"		IO	25	85.00	25.01	330.29	3.63	701.03	5.29
	"	9	21	81.00	23.95	328.56	3.70	568.10	4.87
"	**	8	18	78.00	22.97	327.18	3.77	453.18	4.44
"		7	15	75.00	22.06	326.07	3.84	354.39	4.01
1 "		6	12.25	72.25	21.25	325.25	3.91	270.72	3.57
12	25	12	31.5	81.50	23.96	297.50	3.52	880.42	6.06
6.6	"	IO	25	75.00	22.07	294.89	3.66	605.08	5.24
66	"	9	21	71.00	21.01	293.16	3.74	488.09	4.82
"	"	8	18	68.00	20.03	291.78	3.82	387.65	4.40
"	"	7	15	65.00	19.12	290.67	3.90	301.86	3.97
"	"	6	12.25	62.25	18.31	289.85	3.98	229.72	3.54
12	20.5	12	31.5	72.50	21.32	265.70	3.53	765.64	5.99
66	46	IO	25	66.00	19.43	263.09	3.68	522.30	5.18
66	"	9	21	62.00	18.37	261.36	3.77	419.32	4.78
"	"	8	18	59.00	17.39	259.98	3.87	331.58	4.37
"		7	15	56.00	16.48	258.87	3.96	257.16	3.95
"	"	6	12.25	53.25	15.67	258.05	4.06	195.08	3.53

TABLE 20 (Continued)

TWO CHANNELS (FLANGES OUTSTANDING) AND ONE BEAM

Сн	ANNEL.	В	EAM.	Тота	L SEC.	Axis	BB.	Axis A	A A.
DEPTH.	WEIGHT.	DEPTH.	WEIGHT.	WEIGHT.	AREA.	I	r	I	r
10	25	12	31.5	81.50	23.06	101.50	2.83	866.82	6.01
"	"	10	25	75.00	22.07	188.80	2.93	503.10	5.18
"	"	9	21	71.00	21.01	187.16	2.98	477.05	4.77
"	**	8	18	68.00	20.03	185.78	3.05	377.46	4.34
66	"	7	15	65.00	19.12	184.67	3.11	292.52	3.91
"	"	6	12.25	62.25	18.31	183.85	3.17	221.23	3.48
10	20	12	31.5	71.50	21.02	τ66.90	2.82	735.16	5.91
"	66	10	25	65.00	19.13	164.29	2.93	497.78	5.10
"	"	9	21	61.00	18.07	162.56	3.00	397.56	4.69
"	"	8	18	58.00	17.09	161.18	3.07	312.42	4.28
**	**	7	15	55.00	16.18	160.07	3.15	240.45	3.86
"	"	6	12.25	52.25	15.37	159.25	3.22	180.67	3.43
							0		
10	15	12	31.5	01.50	18.18	143.30	2.81	613.56	5.81
"	"	10	25	55.00	10.29	140.09	2.94	410.34	5.02
	"	9	21	51.00	15.23	138.90	3.02	325.07	4.02
"	"	0	10	40.00	14.25	137.50	3.11	253.40	4.22
	"	6	15	45.00	13.34	130.47	3.20	193.01	3.01
		Ŭ	12.23	42.23	12.33	135.05	3.29	144.52	3.40
0	20	10	25	65.00	10.13	128.40	2.50	403.82	. 5.08
	"	0	21	61.00	18.07	126.76	2.65	303.88	4.67
"	"	8	18	58.00	17.00	125.38	2.71	300.02	4.25
66	66	7	15	55.00	16.18	124.27	2.77	237.34	3.83
"	"	6	12.25	52.25	15.37	123.45	2.83	177.84	3.40
9	15	10	25	55.00	16.19	108.69	2.59	401.61	4.98
66	"	9	21	51.00	15.13	106.96	2.66	317.31	4.58
"	"	8	18	48.00	14.15	105.58	2.73	246.62	4.17
"	"	7	15	45.00	13.24	104.47	2.81	187.64	3.76
"	"	6	12.25	42.25	12.43	103.65	2.89	139.37	3.35
9	13.25	10	25	51.50	15.15	101.49	2.59	370.23	4.94
"		9	21	47.50	14.09	99.70	2.00	291.35	4.55
"	"	0	10	44.50	13.11	98.38	2.74	225.57	4.15
		7	15	41.50	12.20	97.27	2.02	170.97	3.74
		0	12.25	30.75	11.39	90.45	2.91	120.50	3.33

(36)

TABLE 20 (Concluded)

Сн	ANNEL.	I	BEAM.	Тота	L SEC.	Axis	BB.	Axis A	AA.
DEPTH.	WEIGHT.	DEPTH.	WEIGHT.	Weight.	AREA.	I	r	I	r
8	16.25	9	21	53.50	15.87	84.96	2.31	332.84	4.58
"	"	8	18	50.50	14.89	83.58	2.37	258.90	4.17
"	"	7	15	47.50	13.98	82.47	2,43	197.03	3.75
"	"	6	12.25	44.75	13.17	81.65	2.49	146.25	3.33
8	13.75	9	21	48.50	14.39	77.16	2.32	294.63	4.52
"		8	18	45.50	13.41	75.78	2.38	227.79	4.12
"	"	7	15	42.50	12.50	74.67	2.44	172.29	3.71
"	"	6	12.25	39.75	11.69	73.85	2.51	127.13	3.30
8	11.25	9	21 .	43.50	13.01	69.76	2.32	260.19	4.47
	"	8	18	40.50	12.03	68.38	2.38	199.86	4.08
66	"	7	15	37.50	11.12	67.27	2.46	150.17	3.67
"	"	6	12.25	34.75	10.31	66.45	2.54	110.14	3.27
7	14.75	8	18	47.50	14.01	58.18	2.04	238.21	4.12
66	"	7	15	44.50	13.10	57.07	2.09	180.32	3.71
"	"	6	12.25	41.75	12.29	56.25	2.14	133.07	3.29
7	12.25	8	18	42.50	12.53	52.18	2.04	206.90	4.06
"	66	7	15	39.50	11.62	51.07	2.10	155.40	3.66
**	"	6	12.25	36.75	10.81	50.25	2.16	113.80	3.24
7	9.75	8	18	37.50	11.03	45.98	2.04	176.66	4.00
	"	7	15	34.50	10.12	44.87	2.11	131.47	3.60
"	"	6	12.25	31.75	9.31	44.05	2.18	95.43	3.20
6	13	7	15	41.00	12.06	37.27	1.76	161.62	3.66
"	"	6	12.25	38.25	11.25	36.45	1.80	118.44	3.24
6	10.5	7	15	36.00	10.60	32.87	1.76	1 36.99	3.59
"	"	6	12.25	33.25	9.79	32.05	1.81	99.39	3.19
6	8	7	15	31.00	9.18	28.67	1.77	114.41	3.53
"	"	6	12.25	28.25	8.37	27.85	1.82	82.08	3.13

TWO CHANNELS (FLANGES OUTSTANDING) AND ONE BEAM

(37)

TWO CHANNELS (FLANGES IN) AND ONE BEAM

21

TABLE

3.63 2.98 3.60 3.66 2.93 1.72 3.62 3.68 2.93 2.94 2.59 2.59 3.00 3.02 2.66 2.66 2.32 2.32 2.38 2.04 2.II ж AxIS BB. 162.56 164.29 187.16 108.60 138.96 06.00I 365.49 294.89 263.09 188.89 140.69 IOI.49 92.66 77.16 92.69 68.38 45.98 29.78 44.87 400.89 3.30.20 28.67 4.40 3.50 4.77 4-55 4.44 4.68 4.55 4.45 4.39 4.24 4.11 3.97 4.02 3.96 4.03 3-95 4.87 4.67 3.51 3.49 3.07 24 AxIS AA. 636.53 148.53 545.06 457.54 382.45 483.14 315.53 320.67 305.32 239.52 233.95 731.86 377.46 95.22 395.71 201.02 244.24 220.69 135.38 202.62 122.87 85.83 H 16.29 16.19 19.43 22.07 19.13 15.15 21.01 18.07 15.23 15.13 I4.09 14.39 27.95 25.01 22.07 12.03 II.03 00.0I I0.12 TOTAL SECTION. 13.01 30.89 Area. 51.5 47.5 48.5 43.5 40.5 37.5 34.5 95 95 95 55 55 55 55 55 19 нS 5 34 Weight. 02 14 13.25 13.75 11.25 11.25 9.75 13.25 9.75 8 20.5 CHANNEL. Weight. 30 22 12 12 20 SI 51 40 22 50 52 IO 01 01 0 OI 01 10 12 12 12 12 0 6 0 00 8 00 201 N 90 12 Depth. 52 3 201 2ï 3 21 Weight. ,, ,, 23 " " 33 3 3 " ;; " ,, ;; ;; " 23 BEAM. Depth. 01 3 0: 33 ,9 " " " " 23 33 " " " " " 8 33 33 N 3 4.59 4.64 4.67 3.52 3.52 3.53 2.83 2.82 4.42 4.43 4.44 4.45 4.45 3.37 3.36 3.35 3.34 3.32 4.61 4.67 3.51 3.51 3-4 BB. 166.90 709.62 639.82 302.62 270.82 814.90 759.70 634.70 297.50 764.82 654.62 338.02 649.50 265.70 191.50 704.50 AXIS 408.62 373.22 403.50 368.10 332.90 820.02 H 6.96 6.86 6.75 6.72 7.07 6.94 6.82 6.69 6.55 5.73 5.64 5.55 5.45 5.42 5.76 5.66 5.54 5.42 5.30 5.54 7.05 ы AXIS AA. 886.71 827.02 704.48 854.52 735.87 1886.57 1085.97 954.23 598.59 2082.59 1693.68 69.0671 593.29 1401.45 1215.35 1053.36 1268.26 1137.64 1000.78 506.94 457.97 н 33.06 38.96 36.00 33.06 30.12 27.18 38.68 35.74 21.32 23.96 36.00 32.28 24.54 32.78 29.06 32.78 29.84 26.90 23.96 41.90 29.84 TOTAL SECTION. Area. 81.5 81.5 S.III 121.5 101.5 111.5 2.10I 72.5 131.5 97.5 91.5 71.5 Weight. 142 132 122 112 108 I 22 I I 2 102 92 83 20.5 20.5 CHANNEL. Weight. 45 40 35 33 40 30 50 40 35 33 40 35 30 25 25 20 121 12 12 12 ß £ 151 21 121 12 12 12 12 12 10 01 15 12 12 Depth. 12 12 31.5 31.5 " ,, " ,, " 3 " " " " BEAM. Weight. 42 42 \$9 33 \$3 33 ,, 33 " " 2° : 12 12 រះ ដ 23 Depth. 3 33 33 " 33 33 " " 3 33 \$3 " "

1.77

3.06

9.18

H

2.81

143.30

5.40 5.25

613.43

21.02

500.23

18.18

61.5

SI

01

;;

"

(38)

THREE BEAMS

BEAT	и "С."	BEAL	м"Е."	TOTAL S	SECTION.	Axis I	3 B.	Axis A	Α.
Дертн.	WEIGHT.	DEPTH.	WEIGHT.	WEIGHT.	Area.	I	.r	I	r
15	60	20	65	185	54.42	1245.86	4.70	4067.10	0.55
	"	т8	55	175	51.27	1245.00	4.19	2000 70	9.33
	"	15	42	162	47.82	1232.62	5.08	2640.05	7.12
	"	12	31.5	151.5	44.60	1227.50	5.25	1668.14	6 12
			ŬŬ	-00			55		~
15	50	20	65	165	48.50	004.66	4.53	4310.13	0.43
"	"	18	55	155.	45.35	087.00	4.67	3360.74	8.61
66	"	15	42	142	41.90	981.42	4.84	2254.07	7.33
"	"	12	31.5	131.5	38.68	976.30	5.02	1407.70	6.03
									Ŭ
15	45	20	65	155	45.56	939.46	4.54	3970.81	9.34
"	"	18	55	145	42.41	932.79	4.60	3081.51	8.52
66	"	15	42	132	38.96	926.22	4.88	2053.96	7.26
66	"	12	31.5	121.5	35.74	921.10	5.08	1273.57	5.97
15	42	20	65	149	44.04	911.26	4.55	3798.22	9.29
66	"	18	55	139	40.89	904.59	4.70	2939.75	8.48
**	"	15	42	126	37.44	898.02	4.90	1952.74	7.22
"	"	12	31.5	115.5	34.22	892.90	5.11	1206.05	5.94
1									
12	40	18	55	135	39.61	558.99	3.76	2840.59	8.47
66	66	15	42	122	36.16	552.42	3.91	1884.27	7.22
"	66	12	31.5	111.5	32.94	547.30	4.08	1162.51	5.94
12	35	18	55	125	36.51	477.79	3.62	2564.45	8.38
66	"	15	42	112	33.06	471.22	3.78	1687.74	7.14
	66	12	31.5	101.5	29.84	466.10	3.95	1031.64	5.88
12	31.5	18	55	118	34.45	452.79	3.63	2373.63	8.30
	66	15	42	105	31.00	446.22	3.79	1551.63	7.07
	66	12	31.5	94.5	27.78	441.10	3.98	940.98	5.82
10	30	18	55	115	33.57	289.59	2.94	2312.89	8.30
	"	15	42	102	30.12	283.02	3.07	1510.36	7.08
	"	12	31.5	91.5	26.90	277.90	3.21	915.21	5.83
IO	25	18	55	105	30.67	265.39	2.94	2044.80	8.17
"		15	42	92	27.22	258.82	3.09	1319.23	6.96
"	66	12	31.5	81.5	24.00	253.70	3.25	787.99	5.73
1						1			

TWO CHANNELS AND

	Thickn	ess of	Pls.		16		3		716		1/2	
A	rea of	2-18"	Pls.		11.2	5	13.5	0	15.7	5	18.0	0
SECTI Channel.	Plate.	AREA OF 2 [S	B. TO B.	Axis.	I	r	I	r	I	r	I	r
15" /	18"	32.36	10.5	BB	1519.94	5.00	1658.37	6.01	1700.02	6.12	1941.90	6.21
55# \$		0.0		AA	1521.61	5.91	1582.36	5.87	1643.11	5.84	1703.86	5.82
15" (18"	29.42	10.5	BB	1464.94	6.00	1603.37	6.11	1744.02	6.21	1886.90	6.31
50# 5				AA	1404.10	5.88	1464.85	5.84	1525.60	5.81	1586.35	5.78
15" (18"	26.48	10.75	BB	1409.74	6.11	1548.17	6.22	1688.82	6.32	1831.70	6.42
45# 5				AA	1330.11	5.94	1 390.86	5.90	1451.61	5.86	1512.36	5.83
15")	18″	23.52	II	BB	1354.54	6.24	1402.07	6.35	1633.62	6.45	1776.50	6.54
40# 5				AA	1251.01	6.00	1311.76	5.95	1372.51	5.91	1433.26	5.88
15" (18"	20.58	11.25	BB	1299.54	6.39	1437.97	6.50	1578.62	6.59	1721.50	6.68
35# 5				AA	1167.36	6.06	1228.11	6.00	1288.86	5.96	1349.61	5.91
15" (18″	19.80	11.25	BB	1 2 8 4.74	6.43	1423.17	6.54	1563.82	6.63	1706.70	6.72
33# 5				AA	1136.04	6.05	1196.79	5.99	1257.54	5.95	1318.29	5.91
1	Chickne	ss of	Pls.		5 16		38		716		$\frac{1}{2}$	
A	rea of	2-16"	Pls.		10.0	0	12.0	00	14.0	0	16.0	0
15" (16"	32.36	8.5	BE	1446.66	5.84	1569.71	5.95	1694.73	6.05	1821.73	6.14
55# 5				AA	1070.51	5.03	1113.18	5.01	1155.84	4.99	1198.51	4.98
15" }	16"	29.42	8.5	BB	1391.66	5.94	1514.71	6.05	1639.73	6.15	1766.73	6.24
50#)				AA	986.95	5.00	1029.62	4.99	1072.28	4.97	1114.95	4.95
15" {	16″	26.48	8.75	BB	1336.46	6.05	1459.51	6.16	1584.53	6.20	1711.53	6.35
45#)				AA	939.78	5.08	982.45	5.05	1025.11	5.03	1007.78	5.01
15" }	16"	23.52	9	BB	1281.26	6.18	1404.31	6.29	1529.33	6.38	1656.33	6.47
40# 5				AA	888.56	5.15	931.23	5.12	973.89	5.09	1016.56	5.07
15"	16″	20.58	9.25	BB	1226.26	6.33	1349.31	6.44	1474.33	6.53	1601.33	6.62
35#)				AA	833.52	5.22	876.19	5.19	918.85	5.15	961.52	5.13
15"	10″	19.80	9.25	N N BB	1211.40	6.38	1334.51	0.48	1459.53	0.57	1580.53	0.00
33#)			1	AA	811.23	5.22	853.90	5.18	890.50	5.15	939.23	5.12
	Thickne	ess of	Pls.				16		8		16	
	Area of	f 2-16'	Pls.		8.0	0	10.0	00	12.0	00	14.0	00
12"	16"	23.52	8.75	BB	694.17	4.69	773.07	4.80	853.56	4.90	935.64	4.99
40#)				AA	794.96	5.02	837.63	5.00	880.30	4.98	922.96	4.96
12"	10″	20.58	9	BB	058.77	4.80	737.07	4.91	818.10	5.01	900.24	5.10
35#)	- 6#			DD	737.07	5.00	780.33	5.05	823.00	5.03	805.07	5.00
204	10	17.04	9.25		626.07	4.93	702.47	5.04	762.90	5.14	801.07	5.23
30#)					070.97	5.14	/19.03	5.10	702.30	3.07	004.97	5.04
12" (16"	14.70	9.5	BB	588.17	5.09	667.07	5.20	747.56	5.29	829.64	5.38
25# 5				AA	612.83	5.20	655.50	5.15	698.17	5.11	740.83	5.08
12" }	16"	12.06	9.75	BB	556.37	5.27	635.27	5.37	715.76	5.45	797.84	5.53
20.5 \$				AA	553.86	5.25	596.52	5.20	639.19	5.15	681.86	5.12
	Thickn	ess of	Pls.		4		5		38		7	
	Area of	2-14"	Pls.		7.0	0	8.7	5	10.	50	12.2	25
12" }	14"	23.52	6.75	BB	656.65	4.64	725.69	4.74	796.12	4.83	867.94	4.93
40#)				AA	522.39	4.14	550.97	4.13	579.55	4.13	008.13	4.12
12'	14"	20.58	7	BB	021.25	4.75	090.29	4.85	700.72	4.95	832.54	5.04
3577)				and	400.13	4.21	510.71	4.20	545.29	4.19	573.88	4.10

(40)

TWO COVER PLATES

	916		ada	1	++		oj-e		78		I			
-	20.2	5	22.5	0	24.7	5	27.0	0	31.5	0	36.0	0		
-	I	r	I	r	I	r	I	1	I	5	1	r		
	2087.03	6.30	2234.42	6.38	2384.10	6.46	25.36.09	6.54	2847.03	6.68	3167.40	6.81		
	1764.61	5.79	1825.36	5-77	1886.11	5-75	1946.86	5-7.3	2068.36	5-69	2189.86	5.66		
	2032.03	6.40	2179-42	6.48	2329.10	6.56	2481.09	6.63	2792.03	6.77	3112-40	6.90		
	1647.10	5.76	1707.85	5-74	1768.60	5-71	1829-35	5.69	1950.85	5.66	2072.35	5.63		
	1976.83	6.50	2124.22	6.59	2273.90	6.66	2425-89	6.74	2730-83	6.87	3057.20	7.00		
	1573-11	5-80	1633.86	5-78	1694.61	5-75	1755-30	5-73	1870-80	5.09	1998.30	5.00		
	1921.63	6.63	2069.02	6.71	2218.70	6.78	2370.69	6.85	2681.63	6.98	3002.00	7.10		
	1494-01	5-84	1554.70	5.81	1015-51	5-79	1070.20	5.70	1797-70	5-72	1919.20	5-08		
	1800.03	0.70	2014.02	0.04	2103.70	0.91	2315.09	0.90	2020.03	7.10	2947-00	7-22		
	1410.30	5.00	1471.11	5-04	1531.00	5-01	2392.01	2-19	2611 82	5-14	2022-20	3-10		
	1051.03	- 87	1420 70	5.82	1500 54	5 80	1561.20	5.78	1682.70	5.72	1804.20	5.60		
-	1319104	3.01		1.3-3	11	9	34	5-1-	78	<u><u> </u></u>	I			
	18.0	0	20.0	0	22.0	0	24.0	0	28.0	0	32.0	0		
	1050.74	6.22	2081.75	6.31	2214.80	6.38	2340.00	6.46	2626.30	6.60	2011-07	6.73		
	1241.18	4.96	1283-84	4.95	1326.51	4-94	1369.18	4.93	1454-51	4.91	1539-84	4-89		
	1895-74	6.32	2026.75	6.40	2159.80	6.48	2294.90	6.55	2571.30	6.69	2856.07	6.82		
	1157.62	4-94	1200.28	4.93	1242.95	4-92	1285.62	4.91	1.370-95	4.89	1456.28	4.87		
-	1840.54	6.43	1971.55	6.51	2104.60	6.59	2239.70	6.66	2516.10	6.80	2800.87	6.92		
A second distances of the seco	1110.45	5.00	1153.11	4-98	1195.78	4-97	1238.45	4-95	1323.78	4-93	1409.11	4-91		
	1785.34	6.56	1916.35	6.64	2049-40	6.71	2184.50	6.78	2460.90	6.91	2745.67	7.03		
No. of Lot of Lo	1059.23	5.05	1101.89	5-03	1144-56	5.01	1187.23	5.00	1272.56	4-97	1357-89	4-95		
-	1730.34	0.70	1801.35	0.77	1994.40	6.84	2129.50	0.91	2405.90	7.04	2090.07	7-15		
101010	1004.19	5.10	1040.85	5.00	1089.52	5.00	11.32.19	5-04	1217-52	5.01	1302.85	4.98		
Contraction of the	081.00	5.10	1024 56	5.07	1979.00	0.00	1100.00	5.02	1105 22	5.00	1280 56	7-19		
	1	3	1024-50	13.01	5	2.00	11	12.23	3	13.00	7	4-91		
	2		16	~	8		16		24.0	~			1	
	10.4	100	10.0	1 6	20.0		22.0		24.0	1	20.0		32.0	- 60
and the second s	1019-33	5.00	1104.05	5-10	1191.00	5-23	1200.21	5-30	1370.50	5-37	1550.14	5-50	1748.07	5-01
A	082.02	4-94	1000.30	4.93	1050.90	5 24	1244 81	4.90	1225 10	5 17	1221.0.3	4-01	1300.90	5 71
	008.33	1.08	051.00	1.06	002.67	1.05	1026.22	1.03	1070.00	1.02	1164.22	2-29	1240.67	1.88
10.2	948.73	5-31	1034.05	5-30	1121.00	5-46	1200.61	5-52	1200.00	5-50	1485-54	5-71	1678.07	5.81
	847.63	5.02	890.30	5.00	932.97	4.98	975-63	4.96	1018.30	4-95	1103.63	4.92	1188.97	4.89
	913-33	5-45	998.65	5-53	1085.60	5-59	1174.21	5.66	1264.50	5-72	1450.14	5-83	1642.67	5-93
	783-50	5-05	826.17	5-03	868.83	5.00	911.50	4.98	954-17	4-97	1039-50	4-93	1124-83	4.91
	881.53	5.60	966.85	5.67	1053-80	5-73	1142.41	5-79	1232.70	5-85	1418.34	5-95	1610.87	6.05
	724-52	5-08	707.19	5-05	809.86	5-03	852.52	5.00	895-19	4.98	980.52	4-95	1065-86	4.92
	2		1	6			18				*		1	
	14.	00	15.	75	17.	50	19.	25	21.0	00	24.5	1	28.	00
	941.17	5-01	1015.82	5.09	1091.90	5.10	1109-44	5-23	1248.44	5-30	1410.88	5-42	1579-33	5-54
	005.75	5.12	080.4	4.12	1056.50	5.27	1124.04	5.24	1212.04	1 5.40	1275.48	4-10	1542.02	5.60
	602.46	4.17	631.04	4 4.17	659.63	4.15	688.21	4.16	716.70	4.15	773.06	3-34	831.13	4.14
			1		1 01 0		1	-	1	10	1157	1.1.1.1.1		1.1

TABLE 23 (Continued)

»_____»

TWO CHANNELS AND

	Thickn	ess of I	Pls.		1		$\frac{5}{16}$		38		$\frac{7}{16}$	
	Area of	2-14"	Pls.		7.0	0	8.7	5	10.5	50	12.2	5
SEC	TION.	AREA	B. TO B	Avis	I	r	I	r	I	r	I	r
Channel.	Plate.	OF 2 S	OF [S	DD		. 00	6 4 4 4 4					
12"	14"	17.04	7.25		580.05	4.00	055.09	4.98	725.52	5.00	797.34	5.10
$\frac{30''}{12''}$	τ	14.70	7.5	BB	451.22	4.20	610.60	4.20 5.14	600.12	4.25	761.04	4.24
25#	-4	14.70	1.5	AA	411.62	4.36	440.20	4.33	468.70	4.31	407.37	3.32
12" (14"	12.06	7.75	BB	518.85	5.22	587.89	5.32	658.32	5.40	730.14	5.48
20.5# 5				AA	375.02	4.44	403.60	4.40	432.18	4.38	460.77	4.35
	Thickn	ess of H	Pls.		14		<u>5</u> 16		38		7	5
	Area of	2-14"	Pls.		7.0	0	8.7	'5	10.5	50	12.	25
10" (14"	14.70	8	BB	365.89	4.11	414.70	4.21	464.68	4.29	515.83	4.37
25# 5	_			AA	434.89	4.48	463.48	4.45	492.06	4.42	520.64	4.40
10" }	14″	11.76	3.25	BB	341.29	4.27	390.10	4.36	440.08	4.45	491.23	4.52
20# \$				AA	383.58	4.52	412.17	4.48	440.75	4.45	469.33	4.42
10" {	14″	8.92	8.5	BB	317.69	4.47	366.50	4.55	416.48	4.63	467.63	4.70
15#)				AA	332.14	4.57	360.72	4.52	389.31	4.48	417.89	4.44
	Thickn	ess of 1	Pls.		1		<u>5</u> 6		38		7 16	
	Area of	2-12"	Pls.		6.0	0	7.5	0	9.0	0	10.	50
10" {	12″	14.70	6	BB	339.62	4.05	381.46	4.15	424.30	4.23	468.14	4.31
<u>25</u> #)				AA	271.43	3.62	289.43	3.61	307.43	3.60	325.43	3.59
	12"	11.70	0.25		315.02	4.21	350.80	4.30	399.70	4.39	443.54	4.40
$\frac{20''}{10''}$	T 2"	8.02	6 =	BB	241.07	3.09	259.07	3.07	277.07	3.00	295.07	3.04
15# \$		0.gz	0.5	AA	291.42	3.77	220.51	3.74	247.51	3.72	265.51	4.05
[Thickn	ess of H	Pls.		1	1 3-11	5	1 3.74	3	1 3.7-	7	- 3.70
	Area of	2-12"	Pls.		6.0	00	7.5	0	9.0	00	10.	50
9" (12"	11.76	6.25	BB	249.97	3.75	284.26	3.84	319.46	3.92	355.57	4.00
20# 5				AA	238.77	3.67	256.77	3.65	274.77	3.64	292.77	3.63
9" }	I 2″	8.82	6.5	BB	230.17	3.94	264.46	4.03	299.66	4.10	335.77	4.17
15#)				AA	205.96	3.73	223.96	3.70	241.96	3.68	259.96	3.67
9" {	12"	7.78	6.75	BB	222.97	4.02	257.26	4.10	292.46	4.17	328.57	4.24
3.25))	1			198.90	3.80	210.90	3.77	234.90	1.3.74	252.90	3.72
	Thickn	ess of I	Pls.		4			0			16	
	Area of	2-11"	PIS.	BR	220.28	2 70	270.77	2 81	0.2	5	9.0	3
20#	11	11.70	5.25	AA	181.53	3.12	105.40	3.01	302.97	3.09	330.07	3.90
0")	TT"	8.82	5.50	BB	210.48	3.01	250.01	1.00	283.17	3.23	216.27	3.23
15# \$			0.30	AA	157.75	3.32	171.61	3.31	185.48	3.30	199.34	3.20
9" ?	9" (II" 7.78 5.75 H					4.00	243.71	4.08	275.97	4.15	309.07	4.21
13.25 \$				AA	153.33	3.40	167.19	3.38	181.05	3.36	194.92	3.35
	Thickn	ess of I	Pls.		1/4		5	5	38		7	5
	Area of	2-12"	Pls.		6.0	0	7.5	0	9.0	0	10.	50
8" 2	12"	9.56	6.50	BB	181.92	3.42	209.42	3.50	237.72	3.58	266.84	3.65
16.25 5	1			AA	214.04	3.71	232.04	3.69	250.04	3.67.	268.04	3.66

(4?)

TWO COVER PLATES

$\frac{1}{2}$		9 16		58		뷶		34		78		I	
14.0	00	15.7	75	17.5	0	19.2	5	21.0	0	24.5	0	28.0	0
I	r	Ι	r	I	r	I	r	I	r	I	r	I	r
870.57	5.25	945.22	5.32	1021.30	5.39	1098.84	5.46	1177.84	5.52	1 340.28	5.64	1508.73	5.75
565.55	4.23	594.14	4.22	622.72	4.21	651.30	4.20	679.89	4.19	737.05	4.18	794.22	4.17
835.17	5.39	909.82	5.47	985.90	5-53	1063.44	5.60	1142.44	5.66	1304.88	5.77	1473-33	5.87
525.95	4.28	554.54	4.27	583.12	4.26	611.70	4.24	640.29	4.23	697.45	4.22	754.62	4.20
803.37	5-55	878.02	5.62	954.10	5.68	1031.64	5.74	1110.64	5.80	1273.08	5.90	1441.53	6.00
489.35	4.33	517.93	4.32	540.52	4.30	575.10	4.29	603.68	4.27	600.85	4.25	718.02	4.23
2		16				16		34					
14.0	00	15.	75	17.5	0	19.2	5	21.0	0				
568.17	4.45	621.71	4.52	676.46	4.58	732.45	4.64	789.69	4.70				
549.23	4.37	577.81	4.36	606.39	4.34	634.98	4.32	663.56	4.31				
543.57	4.59	597.11	4.00	051.80	4.72	707.85	4.78	705.09	4.83				
497.92	4.40	520.50	4.37	555.08	4.30	583.07	4.34	012.25	4.32				
519.97	4.70	573.51	4.02	502 64	4.00	004.25	4.93	741.49	4.90				
1		4/5.00	4.39	503.04	4.37	332.22	4.35	300.01	4.33				
I2.	00	13.	50	15.0	0	16	0	4	0				
513.00	4.38	558.80	14.45	605.83	4.52	652.82	1 58	702.87	4.64				
343.43	3.59	361.43	3.58	379.43	3.57	307.43	3.57	415.43	3.56		,		
488.40	4.53	534.29	4.60	581.23	4.66	620.22	4.72	678.27	4.77				
313.67	3.63	331.67	3.62	349.67	3.61	367.67	3.61	385.67	3.60				
464.80	4.71	510.69	4.77	557.63	4.83	605.62	4.88	654.67	4.93				
283.51	3.68	301.51	3.67	319.51	3.65	337.51	3.64	355.51	3.63				
1/2		<u>9</u> 16		58		$\frac{11}{16}$		<u>3</u> 4					
12.	00	13.	50	15.0	0	16.5	0	18.0	0				
392.60	4.06	430.57	4.13	469.49	4.19	509.37	4.25	550.22	4.30				
310.77	3.62	328.77	3.61	346.77	3.60	364.77	3.59	382.77	3.59				
372.80	4.23	410.77	4.29	449.69	4.34	489.57	4.40	530.42	4.45				
277.90	3.05	295.90	3.04	313.90	3.03	331.96	3.62	349.96	3.61				
305.00	4.30	403.57	4.35	442.49	4.41	482.37	4.40	523.22	4.51				
1	13.70	200.90	3.00	500.90	3.07	324.90	3.00	342.90	13.05				
2		16			-	16	2		0				
11.0	14.02	12.	50	13.7	3	15.1	3	10.5	4 27				
370.02	4.03	404.82	4.10	440.50	4.10	477.00	4.21	202.45	4.27				
250.22	3.23	285.00	3.22	420.70	3.22	457.26	3.22	404.70	1.42				
213.21	3.28	227.07	3.27	240.04	3.27	254.80	3.26	268.67	3.26				
343.02	4.27	377.82	4.33	413.50	4.38	450.06	4.43	487.50	4.48				
208.78	3.33	222.65	3.32	236.51	3.31	250.38	3.31	264.24	3.30				
1/2		9 16		00 04									
12.0	00	13.	50	15.0	0								
296.80	3.71	327.60	3.77	359.25	3.82								
286.04	3.64	304.04	3.63	322.04	3.62								

TWO CHANNELS AND

	Thickne	ss of Pl	s.		4		$\frac{5}{16}$		<u>상</u> 8	
	Area of :	2-12" P	ls.		6.0	0	.7.5	0	9.0	0
Sectio	N	AREA	B. TO B.	Ava	т		T		T	
Channel.	Plate.	OF 2 [S.	OF [S.		1	r		r	1	r
8″ (12″	8.08	6.75	BB	174.12	3.52	201.62	3.60	229.92	3.67
13.75 \				AA	200.02	3.77	218.02	3.74	236.02	3.72
8″ (I 2″	6.70	7	BB	166.72	3.62	194.22	3.70	222.52	3.76
11.25 \$				AA	185.97	3.83	203.97	3.79	221.97	3.76
	Thickne	ss of Pl	s.		1		5		3	
	Area of	2-10" P	ls.		5.0	0	6.2	5	7.5	0
8")	τ0″	0.56	4.50	BB	164.00	3.37	187.82	2.15	211.40	2 5 2
16.25		y ·0-	4.0-	AA	120.50	2.88	120.01	2 88	TAT 22	2.88
8")	το"	8.08	4.75	BB	157 10	2 17	180.02	2.00	202 60	2.00
12.75		0.00	4.75	AA	13/.10	2.06	100.02	3.34	125.00	3.01
8/1)	T.O.//	6 70		BB	114.23	2.90	124.04	2.95	135.00	2.94
11.25	10	0.70	Э	AA	149.70	3.50	1/2.02	3.05	190.20	3.72
11:25)	(D) 1 1	(D)			107.72	3.03	110.14	3.02	120.55	3.01
	Thickne	ess of P.	ls.		4		16		ž	
	Area of	2-10" P	ls.		5.0	0	0.2	5	7.5	0
7" \	10″	8.68	4.75	BB	120.13	2.96	1 38.00	3.04	156.47	3.11
14.75 \$				AA	117.97	2.94	1 28.39	2.93	1 38.80	2.93
7" (10″	7.20	5	BB	114.13	3.06	132.00	3.13	150.47	3.20
12.25 5				AA	110.06	3.00	1 20.48	2.99	1 30.90	2.98
7" (10″	5.70	5.25	BB	107.93	3.18	125.80	3.24	144.27	3.31
9.75 5				AA	100.94	3.07	111.36	3.05	121.77	3.04
	Thickn	ess of P	ls.		+		5		3	
	Area of	2-0" P	ls.		4.5	0	5.6	3	6.7	5
7")	0″	8.68	3.75	BB	112.55	2.04	120.64	2.01	146.26	2.08
14.75	9	0.00	5.75	AA	82 50	2 52	01 18	2 52	08.78	2.52
7" /	0″	7.20	4	BB	107 55	2.02	122.64	2 10	140.26	2.17
12.25	9	1.20	-	AA	78.77	2.50	86.26	2.50	02.06	2.60
17")	0″	5.70	4.25	BB	101.25	2.39	117 14	2.39	124.06	2.28
0.75	9	5.70	4.23	AA	72.00	2.68	80.50	2.67	88 10	2 66
9.15	Thiston	an of D	1		13.00	2.00	5	2.07		2.00
	America	255 UI P.	15.		4		<u> </u>		8	•
(")	Area of	2-10 1	-18.		5.0	0	0.2	5	7.5	0
0" {	10"	7.04	5		83.45	2.57	90.91	2.04	110.89	2.71
13#)		6 -0			113.35	2.99	123.70	2.98	134.18	2.98
0" {	10″	0.18	5.25	DD A A	79.05	2.00	92.51	2.73	100.49	2.79
10.5#)				AA DD	103.89	3.05	114.31	3.03	124.73	3.02
0"	10"	4.70	5.5	BB	74.85	2.77	88.31	2.83	102.29	2.89
0 #)				AA	93.87	3.10	104.29	3.08	114.70	3.00
	Thickness of Pl		ls.		4		$\frac{5}{16}$		3 8	
-	Area of	2-8" P	ls.		4.0	0	5.0	0	6.0	0
6" (6" (8" 7.64		3	BB	73.68	2.52	84.45	2.58	95.63	2.65
I 3# Ś	13# \$			AA	54.55	2.16	59.89	2.18	65.22	2.19
6" (8″	6.18	3.25	BB	69.28	2.61	80.05	2.68	91.23	2.74
10.5# \$				AA	51.08	2.24	56.41	2.25	61.75	2.25
6")	8″	4.76	3.5	BB	65.08	2.73	75.85	2.79	87.03	2.84
8# 5				AA	47.19	2.32	52.53	2.32	57.86	2.32

(44)

TWO COVER PLATES

16		$\frac{1}{2}$		9 16		50	
10.5	0	12.0	00	13.5	50	15.0	00
I	Ŧ	I	r	I	r	I	r
259.04	3.73	289.00	3.79	319.80	3.85	351.45	3.90
254.02	3.70	272.02	3.68	290.02	3.67	308.02	3.65
251.64	3.82	281.60	3.88	312.40	3.93	344.05	3.98
239.97	3.74	257.97	3.71	275.97	3.70	293.97	3.68
$\frac{7}{16}$		1/2		9 16		58	
8.7	5	10.0	00	II.2	25	12.5	50
235.67	3.59	260.63	3.65	286.30	3.71	312.68	3.76
151.75	2.88	162.16	2.88	172.58	2.88	183.00	2.88
227.87	3.68	252.83	3.74	278.50	3.80	304.88	3.85
145.48	2.94	155.89	2.94	166.31	2.93	176.73	2.93
220.47	3.78	245.43	3.83	271.10	3.89	297.48	3.94
138.97	3.00	149.39	2.99	159.80	2.98	170.22	2.98
7		1/2					
8.7	5	10.0	00	II.2	25		
175.54	3.17	195.23	3.23	215.55	3.29		
149.22	2.93	159.64	2.92	170.05	2.92		
169.54	3.26	189.23	3.32	209.55	3.37		
141.31	2.98	151.73	2.97	162.15	2.96		
163.34	3.36	183.03	3.41	203.35	3.46		
132.19	3.02	142.61	3.01	153.02	3.00		
7	0	1/2		916			
7.0	0	9.0	0	10.	13		
103.43	3.14	181.15	3.20	199.43	3.20		
100.37	2.53	113.90	2.54	121.50	2.54		
157.43	3.23	175.15	3.29	193.43	3.34		
101.55	2.00	109.14	2.00	110.74	2.00		
151.23	3.34	108.95	3.39	187.23	3.44		
95.78	2.00	103.38	2.05	110.97	2.05		
	5 1 E	1	00		25		
125 20	277	140.42	2.82	156.02	2 87		
144.60	2.07	155.01	2.06	165.42	2.06		
120.00	2.85	136.02	2.00	151.62	2.05		
135.14	3.01	145.56	3.00	155.08	2.00		
116.70	2.04	131.83	2.00	147.42	3.03		
125.12	3.04	135.54	3.03	145.95	3.02		
7	5	1/2		9 17	5		
7.0	00	8.0	0	9.0	00		
107.23	2.71	119.27	2.76	131.74	2.81		
70.55	2.20	75.89	2.20	81.22	2.21		
102.83	2.79	114.87	2.85	127.34	2.90		
67.08	2.26	72.4I	2.26	77.75	2.26		
98.63	2.90	110.67	2.94	123.14	2.99		
63.20	2.32	68.53	2.32	73.86	2.32		

.

(45)

TWO CHANNELS AND ONE COVER PLATE

NN -		-	-	-	-																		
ht.	gisW	5.25	>>	6.25	"	6.5	>>	22	6	22	33	00	23	23	10.5	33	33	9.75	**	33	12.25	**	79
SIZE	PLATE.	8ׇ	IOX	8×4	ĭoX [‡]	8 ×4	IOX	$12 \times \frac{1}{4}$	8×4	$IO \times \frac{1}{4}$	$12 \times \frac{1}{4}$	$I0 \times \frac{1}{4}$	12×4	14×4	IOX	12×4	$14 \times \frac{1}{4}$	$IO \times \frac{1}{4}$	$12 \times \frac{1}{4}$	$14 \times \frac{1}{4}$	$IO \times \frac{1}{4}$	$12 \times \frac{1}{4}$	14×4
TAL NOIT	ToT ARE SECT	5.10	5.60	5.68	6.18	5.90	6.40	6.90	7.30	7.80	8.30	7.26	2.76	8.26	89.68	9.18	9.68	8.20	8.70	9.20	02.6	I0.20	04.01
NAELS.	в. т о ИлнО	4.25	6.25	4	9	4.25	6.25	8.25	4	9	00	5.5	7.5	9.5	5.25	7.25	9.25	5.25	7.25	9.25	N	2	6
V	e	.83	-95	.75	.86	-89	1.03	1.14	.72	-84	.95	I.08	1.21	I.32	-90	I.02	I.I3	I.II	1.25	1.38	-93	70.I	61.1
xis BB.	I	13.10	13.86	14.26	15.13	23.92	25.3I	26.50	27.81	29.52	31.02	42.02	43.99	45.71	47.60	49.94	52.04	65.05	68.04	10.71	72.80	76.24	79.37
	r	1.60	1.57	I.59	I.56	2.01	66.I	96.I	1.95	1.95	I.93	2.41	2.38	2.35	2.34	2.33	2.32	2.82	2.80	2.77	2.74	2.73	2.72
Axis 4	I	32.09	61.40	33.66	65.60	38.27	72.73	66.611	44.57	86.34	143.70	73.04	124.07	10.001	83.06	143.07	221.44	80.11	137.12	211.54	89.23	155.20	241.57
AA.	r	2.51	3.31	2.43	3.26	2.55	3.37	4.17	2.47	3-33	4.16	3.17	4.00	4.80	3.09	3.95	4.78	3.13	3-97	4.80	3.03	3.90	4-75
SIZE	PLATE.					$8 \times \frac{5}{16}$	$IO \times \frac{5}{16}$	$12 \times \frac{5}{16}$	$8 \times \frac{5}{16}$	$10 \times \frac{5}{16}$	$12 \times \frac{5}{16}$	$10 \times \frac{5}{16}$	$12 \times \frac{5}{16}$	$14 \times \frac{5}{16}$	$10 \times \frac{5}{16}$	$12 \times \frac{5}{16}$	$14 \times \frac{5}{16}$	$10 \times \frac{5}{16}$	$12 \times \frac{5}{16}$	$14\times_{\overline{16}}^{\overline{5}}$	$\mathbf{IO} \times \frac{5}{16}$	$12 \times \frac{5}{16}$	$14\times ^{5}_{16}$
TAL FAU.	оТ Аяв Гоя2					6.40	7.03	7.65	7.80	8.43	9.05	7.89	8.51	9.14	9.31	9.93	10.56	8.83	9.45	10.08	I0.33	10.95	11.58
NNEFS'	в. т о Снал					4.25	6.25	8.25	4	9	00	້ຽ	7.5	9.2	5.25	7.25	9.25	5.25	7.25	9.25	ŝ	2	6
7	e					1.04	1.18	I.30	-85	66.	01.1	1.25	1.39	1.51	00.I	61.I	1.31	1.30	I.45	1.59	II.I	1.25	1.38
AxIS BB.	I					25.57	27.06	28.32	29.80	31.69	33.32	44.82	46.92	48.74	50.90	53.48	55-75	69.20	72.46	75.32	77.55	81.39	84.81
	н					2.00	1.95	1.92	I.95	I.94	I.92	2.38	2.35	2.31	2.34	2.32	2.30	2.80	2.77	2.73	2.74	2.73	2.71
Axis'.	I					40.94	77-94	128.99	47.24	91.54	152.70	78.25	133.07	204.91	88.27	152.07	235.73	85.32	146.12	225.83	94.44	164.20	255.86
AA.	-					2.5	3.3.	4.1]	2.4(3.30	4.13	3.1	3.95	4.74	3.08	3-91	4.7	3.1	3.9	4.7	3.0	3.8	4.70

(46**)**

TABLE 24 (Continued)

6.24 4.51 5.38 4.63 4.67 5.46 3.80 5.43 4.66 5.45 3.76 4.59 5.40 4.63 5.44 6.24 4-57 5.41 6.23 3.87 3.84 3... Axis AA 282.39 610.18 406.31 180.90 187.96 303.56 441.95 355.00 520.35 721.23 599.09 833.27 76.701 261.04 378.01 82.02 285.39 415.42 400.04 200.26 432.7I 3.87 3.58 3.16 3.12 3.08 3.12 3.10 3.933.893.84 3.79 3.79 3.78 3.07 3.54 3.50 3.54 3.52 3.49 3.97 2 296.75 116.29 122.75 127.88 132.46 163.55 169.12 167.34 180.35 255.15 Axis BB. 111.87 120.19 157.31 222.81 230.42 264.40 286.18 59 174.19 237.30 272.91 306.5 ..68 1.98 1.50 1.65 1.78 1.72 I.58 1.75 1.00 1.92 2.09 2.24 1.60 1.75 1.89 I.37 1.50 r.63 1.84 2.04 e) 8.25 6.75 8.75 10.75 6.75 8.75 10.75 10.25 12.25 CHANNELS PLATE 6.5 10.5 8.5 10.5 12.5 8.5 B. TO B. 5 0 H 8 0 12 18.51 Тотаг Аква ов Светюч. 12.70 12.58 13.33 14.08 13.78 13.32 14.92 5.67 10.71 94.4 19.95 20.70 21.45 26.11 12.28 13.03 14.07 14.17 II.20 14.82 COVER Size of PLATE. 14× $14 \times \frac{3}{8}$ 14× I 2× 14× I4× 16× I2× 14× 16× 18× 12× ×91 ×91 I 2X ×91 16× $\mathbf{18\times}$ 14× ×91 $\mathbf{18\times}$ ONE 5.60 6.34 5.50 4.56 5.45 3.93 4.77 3.85 4.71 5.55 3.89 4.74 5.58 3.79 4.66 5.52 4.71 5.56 6.40 4.62 6.37 ы AA. AND 232.46 256.81 372.76 162.90 253.81 367.28 96.691 267.68 399.28 549.43 326.42 477.69 660.48 377.73 772.52 Axis A 335-34 64.02 556.42 149.97 390.04 274.97 -CHANNELS 3.60 3.19 3.13 3.58 3.98 3.75 3.76 3.21 3.17 3.14 3.12 3.62 3.56 3-55 4.00 3.87 3.87 3.87 3.77 3.54 4.01 ы 235.82 228.26 BB. 256.27 264.61 103.74 113.57 117.55 146.26 151.13 149.70 155.42 160.60 199.84 206.36 212.38 272.52 99.87 107.24 00.24 140.93 242.0I AXIS] [mail 1.18 DWT I.42 1.59 I.72 1.30 I.42 1.10 I.20 I.28 I.54 1.12 1.25 1.37 I.29 I.44 1.57 1.17 1.31 I.44 66. I.44 e 6.75 8.25 12.25 8.75 10.25 10.75 6.75 8.75 10.75 CHANNELS. 10.5 10.5 12.5 6.5 ີ. ເ 8.5 Ob 00 01 12 0 B. TO B. ~ E 18.70 15.26 15.76 16.26 18.20 19.20 11.78 11.82 12.32 13.42 04.6 I 0.20 10.70 11.08 11.58 12.08 10.78 11.28 12.82 12.42 12.92 'NOILDES AC VERA TATOL 14×4 14×1 12×1 14×4 16×} 14×4 16×4 $14 \times \frac{1}{4}$ 16×4 18×4 14×4 16×4 18×4 14×4 16×1 $18 \times \frac{1}{2}$ SIZE OF PLATE. 12×} 16×4 12×4 16×4 12×4 11.25 13.25 13.75 513 CHANNELS. 513 Weight. 33 ,, ,, 3 " " 20 5.3 3 ,, 23 ,, 3 0.5 0: 01 3 00 3 33 00 3 23 ,, ,, 01 v ទ ្ធំ Depth. 3 23 23

TABLE 24 (Continued)

TWO CHANNELS AND ONE COVER PLATE

.Α.	F	5.29	6.10	16.9I	5.22	6.06	6.89	5.16	6.02	6.86	6.11	6.95	7.78	6.12	6.96	61.7	6.05	16.9	7.76	5.98	6.85	17.71
Axis A	I ·	532.52	742.44	992.23	591.50	829.89	08.1111	655.63	923.62	1242.64	1075.29	1439.62	1863.54	1106.61	1481.52	09.7191	1190.26	1599.66	2076.11	1269.36	1712.56	2228.73
	ч	4.74	4.70	4.66	4.66	4.64	4.62	4.58	4.58	4.56	5.88	5.86	5.84	5.86	5.84	5.82	5.78	5.77	5.76	5.70	5.70	5.70
AxIS BB.	I	427.61	440.58	452.46	471.51	486.45	500.28	517.33	534.09	549.75	997.02	1024.48	1050.16	IO16.28	1044.42	1070.78	1086.15	1116.65	1145.38	1153.83	1186.39	1217.21
	e	2.28	2.46	2.62	2.01	2.17	2.32	1.77	1.92	2.06	2.42	2.60	2.77	2.36	2.53	2.70	2.15	2.31	2.47	79.1	2.12	2.28
VNNETS' Ob LO B'	.а Сн А	9.75	11.75	13.75	9.5	11.5	13.5	9.25	11.25	13.25	11.25	13.25	15.25	11.25	13.25	I5.25	II	13	15	10.75	12.75	14.75
CTION. EA OF	л л А В В В В В	90.01	19.94	20.81	21.70	22.58	23.45	24.64	25.52	26.39	28.80	29.80	30.80	29.58	30.58	31.58	32.52	33.52	34.52	35.48	36.48	37.48
SIZE	PLATE.	16× ⁷ / ₁₆	$18 \times \frac{7}{16}$	$20 \times \frac{7}{16}$	$16 \times \frac{7}{16}$	$18 \times \frac{7}{16}$	$20 \times \tfrac{7}{16}$	$16 \times \frac{7}{16}$	$18 \times \frac{7}{16}$	$20 imes rac{7}{16}$	$18 \times \frac{1}{2}$	$20 \times \frac{1}{2}$	$22 \times \frac{1}{2}$	$18 \times \frac{1}{2}$	$20 \times \frac{1}{2}$	$22 \times \frac{1}{2}$	$18 \times \frac{1}{2}$	$20 \times \frac{1}{2}$	$22 \times \frac{1}{2}$	$18 \times \frac{1}{2}$	$20 \times \frac{1}{2}$	$22 \times \frac{1}{2}$
.A.	r	5.40	6.27	7.13	5.31	6.20	7.07	5.23	6.13	7.03	6.18	7.05	06.7	6.19	2.06	7.92	6.11	6.99	7.86	6.03	6.92	7.81
Axis A	I	468.52	651.32	867.23	527.50	737-95	986.80	591.63	832.50	1117.64	I014.54	1356.28	1752.63	1045.86	1398.19	1806.68	1129.51	1516.33	1965.19	1208.61	1629.23	2117.81
	r	4.79	4.78	4.77	4.66	4.66	4.66	4.54	4.55	4.55	5.90	5.89	5.88	5.87	5.86	5.85	5.76	5.77	5.77	5.67	5.68	5.68
Axis BB.	I	368.91	379.17	388.83	405.98	417.28	428.00	445.74	457.93	469.58	922.81	946.75	969.50	940.50	964.98	988.18	1005.07	1031.20	1056.09	1068.20	1095.73	1122.08
	υ	1.53	1.66	1.80	1.31	1.44	1.56	1.13	1.25	I.35	96.I	2.11	2.26	1.90	2.05	2.20	1.71	1.86	2.00	I.56	1.70	1.83
'NNEFS' Ob LO B'	a	9.75	11.75	13.75	9.5	2.11	13.5	9.25	11.25	13.25	11.25	13.25	15.25	11.25	13.25	15.25	II	13	15	I0.75	12.75	14.75
LAL LA OF CTION.	AR AR	16.06	16.56	17.06	18.70	19.20	07.01	21.64	22.14	22.64	26.55	27.30	28.05	27.33	28.08	28.83	30.27	31.02	31.77	33.23	33.98	34.73
SIZE	PLATE.	16×4	18× ¹ / ₄	20×4	$16 \times \frac{1}{4}$	$18 \times \frac{1}{4}$	$20 \times \frac{1}{4}$	16×4	$18 \times \frac{1}{4}$	20×4	$18 \times ^3_8$	20×8	22×8	18× ³ / ₈	20×8	22×8	18×8	20×8	22×8	18×8	20×8	$22 \times \frac{3}{8}$
ht. NNEL.	gisW	20.5	33	13	25	**	33	30	23	**	33	"	23	35	;;	**	40	;;	3	45	33	"
CHA.	Dep	12	,,	33	12	**	**	12	"	33	15	33	33	15	33	"	15	"	"	15	33	33

(48)

97

ONE CHANNEL AND ONE PLATE

Сн	ANNEL.	TR.	APEA		Axis AA			Axis BB	.	
Depth.	Weight.	SIZE OF PLA	OF SEC- TION.	e	I	r	e'	I		G
9 "	13 .25 "	$\begin{array}{c} 8\times \frac{3}{8}\\ 8\times \frac{5}{16}\\ 8\times \frac{1}{4} \end{array}$	6.89 6.39 5.89	2.04 1.82 1.57	84.55 80.31 75.56	3.50 3.55 3.58	.94 .91 .87	18.77 16.00 13.22	1.65 1.58 1.50	13
8	11 .25 "	$\begin{array}{c} 8\times \frac{3}{8}\\ 8\times \frac{5}{16}\\ 8\times \frac{1}{4} \end{array}$	6.35 5.85 5.35	1.98 1.78 1.54	60.08 57.05 53.62	3.08 3.12 3.17	.89 .86 .83	18.05 15.31 12.57	1.69 1.62 1.53	1 <u>1</u>
7 	9·75 "	$8 imes rac{5}{16} 8 imes rac{1}{4} 7 imes rac{5}{16} 7 imes rac{1}{4}$	5·35 4.85 5.04 4.60	1.71 1.49 1.59 1.38	38.92 36.5 5 37.66 35.36	2.70 2.74 2.73 2.77	.88 .84 .85 .81	14.97 12.23 10.52 8.67	1.67 1.59 1.45 1.37	114
6 	8 "	$\begin{array}{c} 7 \times \frac{5}{16} \\ 7 \times \frac{1}{4} \\ 6 \times \frac{1}{4} \end{array}$	4.57 4.13 3.88	1.51 1.32 1.21	24.37 22.86 21.99	2.31 2.35 2.38	.81 •77 •75	10.05 8.22 5·54	1.48 1.41 1.19	1 <u>8</u> "

G EQUALS GAUGE OF CHANNEL

ONE CHANNEL AND ONE ANGLE

LONG LEG OF ANGLE PERPENDICULAR TO WEB OF CHANNEL BACK OF ANGLE FLUSH WITH FLANGE OF CHANNEL:

Сн	IANNEL.				Axis BB.		6	Axis AA.	
Depth.	Weight.	Size of Angle.	TOTAL AREA.	e'	I	r	. e	I	r .
12	20.5	$5 \times 3\frac{1}{2} \times \frac{5}{16}$	8.59	1.54	178.67	4.56	+.02	19.97	1.52
	"	$4 \times 3 \times \frac{5}{16}$	8.12	1.35	172.37	4.61	+.20	13.28	1.28
10	15	$\begin{array}{c} 5\times3\frac{1}{2}\times\frac{5}{16}\\ 4\times3\times\frac{5}{16}\end{array}$	7.02	1.52	97.77	3·73	17	16.98	1.56
	"		6.55	1.35	94.13	3·79	+.03	10.81	1.28
9	13.25	$\begin{array}{c} 5\times3\frac{1}{2}\times\frac{5}{16}\\ 4\times3\times\frac{5}{16}\end{array}$	6.45	1.45	70.70	3.31	— .26	15.82	1.57
"	"		5.98	1.31	67.97	3.37	— .05	9.89	1.29
8 "	11.25 "	$\begin{array}{c} 4 \times 3 \times \frac{5}{16} \\ 3 \times 2\frac{1}{2} \times \frac{1}{4} \end{array}$	5.44 4.66	• 1.24 •94	47.46 43.55	2.95 3.06	13 +.16	9.05 4.58	1.29 .99
7	9·75 "	$\begin{array}{c} 4 \times 3 \times \frac{5}{16} \\ 3 \times 2\frac{1}{2} \times \frac{1}{4} \end{array}$	4.94 4.16	1.16 .89	31.80 29.08	2.54 2.64	22 +.09	8.29 4.05	1.30 .99
6	8	$\begin{array}{c} 4 \times 3 \times \frac{5}{16} \\ 3 \times 2\frac{1}{2} \times \frac{1}{4} \end{array}$	4·47	1.05	20.23	2.13	31	7·59	1.30
"	"		3.69	.83	18.37	2.23	+.01	3·59	.99

FOUR ANGLES, ONE PLATE, AND ONE CHANNEL

Back to back of Angles = width of Plate $+\frac{1}{4}$ " L indicates long leg of Angles ''E'' in contact with channel S indicates short leg of Angles ''E'' in contact with channel

			Сн	ANNEL.		Axis	AA.	A	as BB.		' E."
OF PLATE.	SIZE OF ANGLES "C."	Size of Angles "E."	Depth.	Weight.	TOTAL AREA.	I	r	I	r	e	Angles '
36×3	6×6 ×5	6×6 ×5	15	33	60.84	528.62	2.95	12785.41	14.50	15.64	
36×1	$6 \times 6 \times \frac{1}{2}$	$6 \times 6 \times \frac{1}{2}$	15	33	50.90	478.29	3.07	10759.02	14.54	15.08	
$36 \times \frac{3}{8}$	6×6 ×3	$6 \times 6 \times \frac{3}{8}$	15	33	40.84	432.56	3.25	8625.16	14.53	14.23	
30×5	$6 \times 6 \times \frac{5}{8}$	$6 \times 6 \times \frac{5}{8}$	15	33	57.09	528.50	3.04	8389.78	12.12	12.97	
$30 \times \frac{1}{2}$	$6 \times 6 \times \frac{1}{2}$	$6 \times 6 \times \frac{1}{2}$	15	33	47.90	478.22	3.16	7074.84	12.15	12.48	
$30 \times \frac{3}{8}$	$6 \times 6 \times \frac{3}{8}$	$6\times 6 \times \frac{3}{8}$	15	33	38.59	432.54	3.35	5682.11	12.14	11.75	
$30 \times \frac{5}{8}$	6×4 ×5	6×4 ×8	15	33	52.09	526.11	3.18	7841.38	12.27	12.73	L
30×1/2	0×4 ×1	0×4 ×1	15	33	43.90	477.85	3.30	6618.33	12.28	I 2.20	L
30×§	0×4 ×8	0×4 ×8	15	33	35.59	431.97	3.48	5327.84	12.23	14.43	L
2411	644 VI	6×4 ×1		22	40.00	455 58	2.10	2005 57	0.80	0.60	7
			15	33	40.90	477.70	3.42	3997.71	9.09	9.09	
24×8			15	33	33.34	431.94	3.00	3224.10	9.03	9.04	
24~2	5~32~2	5~32~2		20.5	34.03	190.30	2.40	3193.45	9.09	10.51	5
24/8	5~52~8 6×4 ×1	3~32~8		20.5	24.02	227 14	2.55	2287 15	9.72	9.90	
24/2	6×4 ×3	4/3 /2		20.5	27.21	206 12	2.04	2728 78	9.90 TO 02	10.71	T
~4/8	0/4 /8	4/3 /8	1.	20.3	27.21	200.43	2.13	2730.70	10.03	10.71	
21×5	6×4 ×1	6×4 ×1	15	33	39.40	477.75	3.48	2058.00	8.67	8.46	L
21×3	6×4 ×3	6×4 ×3	15	33	32.22	431.03	3.66	2380.51	8.61	7.88	L
21×1	$5\times3\frac{1}{2}\times\frac{1}{2}$	$5\times3\frac{1}{2}\times\frac{1}{2}$	12	20.5	32.53	196.35	2.46	2348.64	8.50	9.20	S
$21 \times \frac{3}{8}$	$5\times3\frac{1}{2}\times\frac{3}{8}$	$5\times3\frac{1}{2}\times\frac{3}{8}$	12	20.5	26.11	176.51	2.60	1895.95	8.52	8.72	S
$21 \times \frac{1}{2}$	$6 \times 4 \times \frac{1}{2}$	$4 \times 3 \times \frac{1}{2}$	12	20.5	32.53	237.11	2.70	2505.38	8.78	9.87	L
$21 \times \frac{3}{8}$	$6 \times 4 \times \frac{3}{8}$	4×3 $\times\frac{3}{8}$	12	20.5	26.09	206.41	2.81	2029.79	8.82	9.36	L
										•	
$18 \times \frac{1}{2}$	$6 \times 4 \times \frac{1}{2}$	$6\times 4 \times \frac{1}{2}$	15	33	37.90	477.72	3.55	2091.22	7.43	7.25	L
18×3	$6\times 4 \times \frac{3}{8}$	6×4 $\times\frac{3}{8}$	15	33	31.09	431.92	3.73	1691.84	7.38	6.75	L
$18 \times \frac{1}{2}$	6×4 $\times\frac{1}{2}$	$4 \times 3 \times \frac{1}{2}$	10	15	29.46	161.98	2.34	1626.05	7.43	8.95	S
18×3	$0 \times 4 \times \frac{3}{8}$	$4\times3\times\frac{3}{8}$	10	15	23.39	135.08	2.40	1315.82	7.50	8.57	S
	6							0			
$15\times\frac{1}{2}$	0×4 ×1/2	4×3 ×1	10	15	27.90	101.94	2.41	1070.58	6.19	7.50	S
15×8	0×4 ×8	4×3 ×8	10	15	22.27	135.07	2.40	870.01	0.25	7.17	S

(51)

· · · ·

-

SECTIONS OF COLUMNS, SECTIONS OF TOP CHORDS,

Selected from some of the Largest Buildings and Bridges in the United States

The values of the sections covered by the tables on Moments of Inertia and Radii of Gyration are suitable for structures of ordinary proportions. The variety of ways in which standard shapes are used to compose sections of monumental structures, has made it necessary to treat this class separately. The sections here given are selected from some of the largest buildings and bridges in the United States. The types show what is customary as well as what can be done when circumstances and conditions demand it. It is necessary to be acquainted with these conditions in order to compare intelligently the values of these sections. They are classified and tabulated here in order to more readily serve as a guide in the design of new structures.

(53)

PROPERTIES OF COLUMNS

SECTIONS OF WHICH ARE SHOWN ON PAGES 56 TO 60

NAME OF RULLENC.	APRA.	WRIGHT.	AXIS	AA.	AXIS	BB.
			I	r	I	r
Columns having One Web Plate.						
First National Bank Building, Chicago	11.921	541.0	11470	8.49	3140	4.44
Frick Building, Pittsburg	172.61	586.9	13180	8.74	3510	4.51
Column 43 C. & N. W. R'y Office Building, Chicago	134.51	457.3	6120	6.74	2080	3.93
Column 24 C. & N. W. R'y Office Building, Chicago	175.50	596.7	9160	7.23	3850	4.69
Land Title Building, Philadelphia	198.98	676.5	15580	8.85	4040	4.50
Columns having Two Web Plates.						
Rock Island R'y Station, Chicago	57.74	196.3	1660	5.36	1120	4.40
Park Row Building, New York	195.76	665.6	14460	8.60	11340	7.61
Column (a), Ivins Building, New York	228.76	777.8	26010	10.66	10890	6.90
Wanamaker Building, New York :	352.14	1197.3	35440	10.03	18780	7.30
Adams Building, Chicago	174.00	591.6	8220	6.87	3670	4.60
Columns having Three Web Plates.						
Farmers' Bank Building, Pittsburg	233.42	793.6	9400	6.33	9950	6.53
Column I Waldorf-Astoria Hotel, New York	180.10	612.3	8900	7.03	5320	5.43
Column (b) Ivins Building, New York	188.74	641.7	21940	IO.78	10270	7.38
Miscellaneous Types.						
Column 280 Waldorf-Astoria Hotel, New York	381.17	1296.0	63380	12.89	35930	17.9
Column (a) Illinois Steel Co., Chicago	114.58	389.6	24070	14.50	8360	8.54
Column (b) Illinois Steel Co., Chicago	202.91	689.9	87040	20.71	18190	9.47

(54)

PROPERTIES OF TOP CHORDS OF BRIDGES

SECTIONS OF WHICH ARE SHOWN ON PAGES 61 TO 56

5		117	AXIS	AA.	AXIS	BB.
NAME OF BRIDGE OR STRUCTURE.	AREA.	W EIGHT.	I	-	I	h
Laced Top and Bottom, Two Webs.						
Williamsburg Bridge, New York	143.98	489.5	14370	66.6	11440	8.91
300 Foot Span, Boone Viaduct, Boone, Ia.	121.00	4.11.4	12660	I0.23	14500	10.95
Panther Hollow Steel Arch, Pittsburg	108.05	367.4	11340	10.25	9660	9-45
International Bridge, Buffalo	190.34	647.1	29730	12.50	23760	71.IT
Monongahela Bridge, Pittsburg	347.50	1181.5	43790	11.22	165620	21.83
Laced Top and Bottom, Three Webs.						
Niagara Cantilever Bridge, Niagara Falls	230.73	784.5	11890	7.18	50130	14.74
Laced Top and Bottom, Four Webs.						
Memphis Bridge, Memphis, Tenn	250.52	851.8	52460	14.47	24270	9.84
Thebes Bridge, Thebes, Ill.	282.02	958.9	50760	13.42	114930	20.19
Cover Plate on Top, Two Webs.						
New Omaha Bridge, Omaha, Nebraska	85.26	289.9	4190	10.7	8920	I0.23
Cairo Bridge, Cairo, Kentucky	I38.26	470.1	9810	8.42	20750	12.25
International Bridge, Buffalo	110.38	375.3	9550	9.30	10900	9.93
Cover Plate on Top, Four Webs.						
Sixth Street Bridge, Pittsburg	182.42	620.5	24000	11.47	22100	10.11
Bellefontaine Bridge, Alton, Ill.	211.10	718.0	39880	13.80	16720	8.90
Monongahela River Bridge, Pittsburg	273.05	928.4	32480	10.90	61090	14.96
Rankin Bridge, Rankin, Pa	334.52	1137.4	44960	11.59	68740	14.33
Miscellaneous Types.						
(Roof Truss) Waldorf-Astoria Hotel, New York	314.25	1068.4	34270	IO.44	27990	9.43
Eads Bridge, St. Louis	116.60	396.4	3640	5.59	3640	5.59

SECTIONS OF COLUMNS

FIRST NATIONAL BANK BUILDING, CHICAGO

 $\begin{array}{l} 4 \mid \underline{s} - 8'' \times 8'' \times \frac{15''}{16''} \\ \text{I Pl.} - 17'' \times \frac{7}{8}'' \\ \text{6 Pls.} - 18'' \times \frac{13}{16}'' \end{array}$

0

2

m

0

FRICK BUILDING, PITTSBURG

 $\begin{array}{l} 4 \underline{|s|} - 8'' \times 8'' \times \frac{15}{16}'' \\ 6 & \text{Pls.} - 18'' \times \frac{15}{16}'' \\ 1 & \text{Pl.} - 17'' \times \frac{7}{8}'' \end{array}$

COLUMN 43, C. & N. W. R'Y OFFICE BUILDING, CHICAGO

> 6 Pls. $-16'' \times \frac{5''}{8}$ 2 Pls. $-16'' \times \frac{11}{16}''$ 2 Pls. $-12\frac{1}{2}'' \times \frac{3}{4}''$ 4 $\lfloor s - 6'' \times 6'' \times \frac{3}{4}''$

COLUMN 24, C. & N. W. R'Y OFFICE BUILDING, CHICAGO

6 Pls. $-18'' \times \frac{5''}{8}$ 4 Pls. $-18'' \times \frac{11''}{16}$ 2 Pls. $-12\frac{1}{2}'' \times \frac{3}{4}''$ 4 $\lfloor \underline{s} - 8'' \times 6'' \times \frac{3}{4}''$

(56)

SECTIONS OF COLUMNS

LAND TITLE BUILDING, PHILADELPHIA

 $\begin{array}{l} 4 \underline{[s]} - 8'' \times 8'' \times \frac{15''}{16}'' \\ 2 \text{ Pls.} - 17'' \times \frac{3}{4}'' \\ 8 \text{ Pls.} - 18'' \times \frac{13''}{16}'' \end{array}$

ROCK ISLAND RAILWAY STATION, CHICAGO

 $\begin{array}{l} 4 \underline{[s]} - 5'' \times 3 \underline{1}'' \times \underline{3}'' \\ 2 \text{ Pls.} - 12'' \times \underline{1}'' \\ 2 \text{ Pls.} - 15'' \times \underline{3}'' \end{array}$

PARK ROW BUILDING, NEW YORK

 $\begin{array}{l} 6 \; \mathrm{Pls.} - 24^{\prime\prime} \times \frac{3^{\prime\prime}}{4} \\ 4 \left[\underline{s} - 6^{\prime\prime} \times 4^{\prime\prime} \times \frac{3^{\prime\prime}}{4} \right] \\ 2 \; \mathrm{Pls.} - 16^{\prime\prime} \times \frac{3^{\prime\prime}}{4} \\ 2 \; \mathrm{Pls.} - 6^{\prime\prime} \times \frac{3^{\prime\prime}}{4} \\ 2 \; \mathrm{Pls.} - 18^{\prime\prime} \times \frac{3^{\prime\prime}}{4} \end{array}$

COLUMN (a), IVINS BUILDING, NEW YORK

 $\begin{array}{l} 4 [\underline{s} - 6'' \times 6'' \times \frac{3}{4}'' \\ 2 \text{ Web Pls.} - 24'' \times \frac{3}{4}'' \\ 2 \text{ Side Pls.} - 22'' \times \frac{3}{4}'' \\ 2 \text{ Side Pls.} - 12'' \times \frac{3}{4}'' \\ 6 \text{ Cover Pls.} - 24'' \times \frac{3}{4}'' \end{array}$

(57)

SECTIONS OF COLUMNS

WANAMAKER BUILDING, NEW YORK

 $\begin{array}{c} 4 \underbrace{[s]}{}^{\bullet} - 6'' \times 6'' \times \frac{7}{8}'' \\ 6 \operatorname{Pls.} - 28'' \times \frac{15}{16}'' \\ 6 \operatorname{Pls.} - 22'' \times \frac{15}{16}'' \\ 2 \operatorname{Pls.} - 10'' \times \frac{7}{8}'' \\ 2 \operatorname{Pls.} - 8\underbrace{\frac{1}{4}'' \times \frac{7}{8}''} \\ \end{array}$

ADAMS BUILDING, CHICAGO

3 - 13" [s 50# 6 Pls. - 18" \times 1" 2 Pls. - 12 $\frac{1}{2}$ " \times $\frac{7}{8}$ "

FARMERS' BANK BUILDING, PITTSBURG

6 Pls. $- 13'' \times \frac{3}{4}''$ 8 $|\underline{s} - 6'' \times 4'' \times \frac{7}{8}''$ 2 Pls. $- 24'' \times \frac{13}{16}''$ 4 Pls. $- 24'' \times \frac{3}{4}''$

COLUMN 1, WALDORF-ASTORIA HOTEL, NEW YORK

 $\begin{array}{c} 4 - 15'' [s 55 \# \\ 2 \text{ Pls.} - 14 J'' \times \frac{7}{8}'' \\ 6 \text{ Pls.} - 20'' \times \frac{3}{4}'' \end{array}$

(58)

SECTIONS OF COLUMNS

SECTIONS OF COLUMNS

(60)

B ... WILLIAMSBURG BRIDGE, NEW YORK

 $4 \underbrace{1}{5} - 6'' \times 4'' \times \frac{3''}{4}$ $4 \boxed{s} - 6'' \times 4'' \times \frac{9}{16}''$ 2 Pls. $-30'' \times \frac{3''}{4}$ 2 Pls. - $18'' \times \frac{3}{4}''$

PANTHER HOLLOW STEEL ARCH, PITTSBURG

(61)

MEMPHIS BRIDGE, MEMPHIS, TENN.

 $8[\underline{s} - 6'' \times 4'' \times \frac{3}{4}'' \\ 8 \text{ Pls.} - 30'' \times \frac{13}{16}''$

NEW OMAHA BRIDGE, OMAHA, NEB.

 $\begin{array}{l} 4 \underbrace{ s } - 4'' \times 4'' \times \frac{3''}{4''} \\ 1 & \mathrm{Pl.} - 28'' \times \frac{1}{2}'' \\ 2 & \mathrm{Pls.} - 18'' \times \frac{3''}{4}'' \\ 2 & \mathrm{Pls.} - 10'' \times \frac{3''}{4}'' \\ 2 & \mathrm{Pls.} - 5'' \times \frac{3''}{4}'' \end{array}$

CAIRO BRIDGE, CAIRO, KENTUCKY

INTERNATIONAL BRIDGE, BUFFALO

SIXTH STREET BRIDGE, PITTSBURG

· (64)

BELLEFONTAINE BRIDGE, ALTON, ILLINOIS

MONONGAHELA RIVER BRIDGE, PITTSBURG

RANKIN BRIDGE, RANKIN, PA.

(65)

ROOF TRUSS, WALDORF-AS-TORIA HOTEL, NEW YORK

 $\begin{array}{c} 12 \lfloor \underline{s} - 6'' \times 4'' \times \frac{1}{2}'' \\ 10 \text{ Pls.} - 29\frac{1}{2}'' \times \frac{3}{4}'' \\ 2 \text{ Pls.} - 36'' \times \frac{1}{2}'' \end{array}$

EADS BRIDGE, ST. LOUIS

(66)

UNIT STRAINS

The following data on unit strains, pages 67, 68, 69, 70, 71, and 73, is taken from Bulletin No. 41 of the American Railway Engineering and Maintenance of Way Association, published in 1903.

STRAINS UNDER DYNAMIC LOADS

The subject of unit strains in iron and steel structures is, as said before, so closely related to the quality and strength of material used, and the loading which the structure has to carry, that the three must be studied together.

The quality and strength of material to be used in the structure is well known from the numerous tests made on both specimens and full-sized structural members in the last fifty years, during which period iron and steel have been used for structures of various kinds.

The load which the structure may have to carry during its service is, on the contrary, more or less an assumption at the time the structure is designed.

If this is a railroad bridge, we assume that it shall carry a load represented by a typical train. The static load applied on the bridge from this typical train may closely represent the static load of the heaviest actual train passing over the bridge when in service, but we are still in doubt how much this static load should be increased to closely represent the dynamic load from the moving train.

It is on the question how to provide for this dynamic load of the moving train that the engineers who design bridges differ, and there is a wide field for the investigator to determine by experiments and observation what the relations are between the static train load and the load produced by the moving train for various lengths of spans and for the various members of the bridge. Such investigation, if carefully made and of sufficient extent, would be of great value to both the designers and the purchasers of bridges. The Committee is now making some investigations in this direction in connection with the subject of impact.

Two distinct methods are used to provide for the excess of the dynamic load above the assumed static load. The first method, which we may say has been used ever since bridge designing became a science, and which is still adhered to by many engineers, is to vary the unit strains in the different members of the structure according to some rule. Some engineers vary the unit strains according to the relation between

(67)

UNIT STRAINS

live and dead load, or total load and dead load; some use different fixed unit strain for the different members of the structure; and some use different unit strains for live load and for dead load.

The second method, which has lately found favor with and has been adopted by many of the American engineers, is to use a constant unit strain for the same grade of material and provide for the dynamic effect of the load by increasing the static liveload strains according to impact formulas.

This last method seems to be the most rational, as it treats the dynamic increment of the load as a load, and not as a decreased strength of material.

It has been thoroughly demonstrated, by experiments, that when a piece of iron or steel is strained above its elastic limit, but below its ultimate strength, it will finally break if the strain is repeated a sufficient number of times, and that the nearer this strain is kept to the elastic limit, the larger is the number of repetitions of the strain that are required to break the piece, and that when this repeated strain is close above the elastic limit, the number of repetitions required to break the piece rapidly approaches infinity. It is therefore reasonable to assume that a piece strained below the elastic limit will stand any number of repetitions of the strain without being injured or reduced in strength.

If, therefore, all the possible strains with their dynamic increment to which the various members of the structure will probably be subjected are found, and if such perfect workmanship is possible that each piece in a member is strained equally per unit with every other piece in the same member, and the material is free from defects, then it would be safe to use a unit strain equal to that required to strain the member up to the elastic limit. The material may have defects not discovered by the inspection and the workmanship is not perfect. The pieces forming the member will, therefore, not be equally strained in the finished structure. Some pieces may have to be stretched considerably before other pieces take any of the strain.

How much additional section should be allowed for these defects in material and workmanship depends on the care taken in the manufacturing at mills and shops, and on the thoroughness of inspection. If the section is increased seventy-five per cent., it seems reasonable to assume that these defects have been provided for very liberally. This would give an allowable unit strain equal to four-sevenths of the elastic limit.

UNIT STRAINS IN COMPRESSION MEMBERS

There is much diversity of opinion in regard to unit strains for compression members. Numerous tests have been made, the results plotted on diagrams, and formulas

UNIT STRAINS

devised to agree as closely as possible with the average of the results of tests. Most of these formulas, when reduced to the same base unit, follow each other closely within the limits for length of member divided by least radius of gyration of cross-section of member that are used in good designing.

The attached diagram (page 73) gives the allowed unit strains, derived from some well-known formulas for the various relations of "l over r," reduced to a base unit strain of 16,000 pounds per square inch.

The straight-line formula, first proposed by Thomas H. Johnson, and used, among others, by Theodore Cooper in his specifications, is very simple, and gives values that are no doubt as close to the actual conditions as any of the other more complicated formulas, within the limits for the relation "l over r" used in good designing.

This formula discourages inexperienced designers from using long and flimsy compression members, which they are very apt to do when they use a formula which will allow comparatively high unit strains for high values of the relation "l over r."

The earlier formulas always made a distinction between members with pin end connections and members with riveted end connections, but the later formulas make no such distinction.

A member with pin end connections is not as rigid as a member with riveted end connections; but, on the contrary, pin connections do not transmit the secondary bending strains, caused by the deflection of the structure, to their member as much as riveted connections. It seems, therefore, as if the advantage of stiffness in a member with riveted end connections is, at least to some extent, counterbalanced by the disadvantage of transmitted bending strains, and that there is practically no difference in strength between the two members, if of same section but with the above difference in end connection.

Our knowledge is still limited in regard to the effects of alternating and combined strains. As the members subject to these strains are very few in an ordinary structure, we can afford to be liberal with material in proportioning them.

The large number of bridges are of so short spans that the lateral and sway bracing should be proportioned to resist the effect of the swinging and swaying of the trains rather than the effect of the wind pressure. The term "wind bracing" is misleading, except for long spans. There is no reason why the unit strains allowed on these parts of the structure should be different from those previously given.

(69)

SUMMARY OF COMPRESSION FORMULÆ

From Bulletin No. 41 of the American Railway Engineering and Maintenance of Way Association

A — Gordon's Formula. Square bearing.

B — Gordon's Formula. Pin and square bearing. $sP_1 = \frac{50000}{1 + \frac{l^2}{36000 r^2}}$

 $sP_{1} = \frac{50000}{1 + \frac{l^{2}}{24000 r^{2}}}$

 $P_1 = \frac{15000}{1 + \frac{l^2}{1 - 1000}}$

C — Gordon's Formula. Pin bearing. $sP_1 = \frac{50000}{1 + \frac{l^2}{1 + \frac{l^2}$

D — American Bridge Co. Standard specifications railway bridges.

E — Boston & Maine R. R. Standard specifications riveted members.

- F Boston & Maine R. R. Standard specifications pin members.
- G J. B. Johnson's Formula. Riveted ends.
- H J. B. Johnson's Formula. Pin ends.

 $a_{1} = \frac{a}{10000} \times \frac{8700}{1 + \frac{l^{2}}{28000}r^{2}}$

- $P_1 = \frac{a}{10000} \times \frac{8700}{1 + \frac{l^2}{14000 r^2}}$
- $\mathbf{P}_{1} = \frac{1}{2} \left(\frac{\mathbf{f}}{2 + \frac{\mathbf{f} \mathbf{P}_{1}}{25 \mathrm{E}} \left(\frac{\mathbf{l}}{\mathbf{r}} \right)^{2}} \right)$
- $\mathbf{P_1} = \frac{1}{2} \left(\frac{\mathbf{f}}{\mathbf{2} + \frac{\mathbf{f} \mathbf{P_1}}{\mathbf{16} \cdot \mathbf{E}} \left(\frac{\mathbf{l}}{\mathbf{r}} \right)^2} \right)$

(70)

SUMMARY OF COMPRESSION FORMULÆ (Continued)

From Bulletin No. 41 of the American Railway Engineering and Maintenance of Way Association

I — Max von Leber's Formula. In Bulletin of European Railway Congress. $P_{t} = \frac{P}{1 + 0.01 \frac{l}{r}}$

J — Cooper's Formula. Chord segments. Live load strains. $P_1 = 10000 - 45 \frac{1}{r}$

K — Cooper's Formula. Posts of through bridges. Live load strains. $P_1 = 8500 - 45\frac{l}{r}$

L - Cooper's Formula.Posts of deck bridges. Live load strains. $P_1 = 9000 - 40 \frac{1}{r}$

M — Formula recommended by the Committee on Iron and Steel Structures. $P_1 = 16000 - 70 \frac{1}{r}$

P = Base unit strains in lbs. per square inch.

 $P_1 =$ Allowable unit strains in lbs. per square inch.

1 =Unsupported length in inches.

r = Least radius of gyration in inches.

E = Modulus of elasticity = 29,000,000.

f = Elastic limit = 28,000.

a' = Values given in table in Boston & Maine R. R. specifications for metal bridges, 1896.

s = Factor of safety.

(71)

VALUES DERIVED FROM FORMULÆ ON PAGES 70 AND 71

REDUCED TO 16,000 BASE UNIT, AND CORRESPONDING TO CURVES ON SHEET NO. 2

М	Ιδοοο	15300	14600	13900	13200	12500	11800	00111	10400	0046	0000	8300	7600	6900	6200	5500	4800	4100	3400	2700	2000
Ч	I 6000	15290	14580	13870	13160	12440	11730	11020	10310	9600	8890	8180	7870	6760	6040	5330	4620	3910	3200	2490	1780
К	Ιίοοο	15150	14310	13460	12610	02711	10920	οζόοι	9220	8380	7530	6680	5840	4990	4140	3300	2450	1600	750	6	-940
ſ	16000	15280	14560	13840	13120	12400	11680	10960	10240	9520	8800	8080	7360	6640	5920	5200	4480	3760	3040	2320	IÓOO
Ι	1 6000	14550	13330	12310	11430	06901	10000	9410	8890	8420	8000	7620	7270	6960	6670	6400	6150	5930	5710	5520	5330
н	I 6000	15960	15860	1568o	15440	15130	14770	14350	13900	13410	12890	12360	11810	11270	10720	10190	9660	9160	8670	8210	7760
Ð	Ιδοοο	15980	15910	15790	15630	15430	15190	14920 -	14610	14270	13900	13510	13100	12680	12250	11810	11380	10940	10500	10080	9660
Ł	13920	13820	13530	1 3080	12490	11810	11070	10310	9550	8820	8120	7470	6860	6310	5800	5340	4920	4540	4200	3890	3610
ы	13920	13870	13720	13490	13170	12780	12330	11850	11330	10800	10260	9720	9190	8680	8190	7720	7270	6850	6450	6080	5730
Q	Ιΰοοο	15880	15540	1 5000	14300	13500	12630	11740	10850	1 0000	9190	8440	7740	7110	6530	6000	5520	5090	4710	4360	- 4040
C	Ιδοοο	15910	15650	15240	14690	14050	13330	12580	11800	11030	10280	9570	8890	8250	7660	JII0	6610	6140	5710	5320	4970
в	Ιίοοο	15930	15740	15420	15000	14490	13910	13290	12630	09611	11290	10640	10000	9390	8810	8260	7740	7260	6810	6390	0000
V	Ι ίσοο	15960	15820	15610	15320	14960	14550	14080	13590	13060	12520	11980	11430	10890	10360	9850	9350	8880	8420	0664	7580
	0	OI	20	30	40	50	60	20	80	00	100	OII	120	130	140	150	160	170	180	190	200

(72)

CURVES DERIVED FROM FORMULÆ ON PAGES 70 AND 71

REDUCED TO 16,000 BASE UNIT

From Bulletin No. 41 of the American Railway Engineering and Maintenance of Way Association

(73)

VALUES CORRESPONDING TO FORMULÆ ON PAGES 70 AND 71 .

AND TO CURVES ON SHEET NO. 3

M		1 6000	15300	14600	13000	13200	12500	11800	00111	10400	0026	0000	8300	7600	6900	6200		5500	4800	4100	3400	2700	2000
L		0000	8600	8200	7800	7400	2000	6600	6200	5800	5400	5000	4600	4200	3800	3400		3000	2600	2200	1800	1400	1000
К		8500	8050	7600	7150	6700	6250	5800	5350	4900	4450	4000	3550	3100	2650	2200		1750	1300	850	400	-50	-500
ŗ		10000	9550	9100	8650	8200	7750	7300	6850	6400	5950	 5500	5050	4600	4150	3700		3250	2800	2350	1900	1450	0001
Н		2000	6980	6940	6860	6750	6620	6460	6280	6080	5870	5640	5410	5170	4930	4690		4460	4230	4010	3790	3590	3400
Ċ		2000	0669	6960	0169	6840	6750	6650	6530	6390	6240	 6080	5910	5730	5550	5360		5170	4980	4790	4600	4410	4230
Ч		13050	12960	12690	12260	01/11	04011	10380	0296	8960	8270	7610	2000	6430	5910	5440		5010	4610	4260	3940	3650	3380
E	-	13050	13000	12870	12640	12350	11980	11560	OIIII	10620	10120	9620	0110	8620	8140	7680		7240	6820	6420	6050	5700	5370
A		15000	14890	14570	14060	13410	12660	11840	IIOIO	10180	9370	8620	0164	7260	6660	6120		5030	5180	4780	4410	4080	3790
C		20000	49720	48910	47620	45920	43900	41670	39300	36880	34480	32140	29900	27780	25790	23940		22220	20640	06161	17860	16640	15520
в		20000	49790	49180	48200	46880	45280	43480	41520	39480	37380	35300	33240	31250	29340	27520	c	2,5010	24190	22690	21280	02661	18750
A	00002	20000	49860	49450	48780	47880	46770	45460	44010	42450	40820	39130	37420	35720	34030	32370		30770	29220	27740	26320	24970	23680
	•	>	OI	20	30	40	50	00	20	80	90	00 I	OII	120	° 130	140	1	120	160	0/1	180	190	200
									(74)													

1

CURVES CORRESPONDING TO FORMULÆ ON PAGES 70 AND 71

(75)

RAILROAD BRIDGE SPECIFICATIONS

Name.	YEAR.	GRADE OF STEEL.	ELASTIC LIMIT.	SAFE TENSION.	SAFE COMPRESSION.	SAFE Stress Combined.
American Bridge Co.	1900	52000-62000 60000-70000	1/2 Ult.	15000 17000	$\begin{cases} \frac{15000}{1 + \frac{l^2}{13500r^2}} & \frac{17000}{1 + \frac{l^2}{11000r^2}} \end{cases}$	$D+\frac{3}{4}B$
Theodore Cooper	1901	54000-62000 60000-67000	1/2 Ult.	Variable	Straight line-Variable	D+B
The Osborn Eng. Co.	1903	52000-62000 60000-70000	32000 35000	15000 17000	$\begin{cases} \frac{15000}{l^2} & \frac{17000}{l^2} \\ \frac{l^2}{1 + \frac{l^2}{36000r^2}} & 1 + \frac{l^2}{36000r^2} \end{cases}$	
*A.R.E. & M. of W.A.	1903	55000-65000	28000	16000	$16000 - 70 \frac{l}{r}$	
Pennsylvania R.R.	1901	52000-62000	28000	15000	$\left\{ \frac{15000}{1 + \frac{l^2}{13500^{*2}}} \right.$	$D + \frac{3}{4} B$
N.Y.C. & H.R. R.R.	1902	56000-64000	33000	L.L. – 8000 D.L. – 16000	$\left\{\frac{\frac{8000}{1+\frac{l^2}{18000r^2}} + \frac{16000}{1+\frac{l^3}{18000r^2}}\right\}$	D+B
Missouri Pacific	1902	52000-62000 60000-70000	<u></u> ¹ ⁄₂ Ult.	15000	$17000-80\frac{l}{r}$	

D = direct stress in pounds per square inch.

B = extreme fiber stress in pounds per square inch.

L.L. = live load.

$$D.L. = dead load.$$

* American Railway Engineering and Maintenance of Way Association

(76)

HIGHWAY BRIDGE SPECIFICATIONS

NAME. •	YEAR.	GRADE OF STEEL.	ELASTIC LIMIT.	Safe Tension.	SAFE COMPRESSION.	SAFE Stress Combined.
American Bridge Co.	1901	52000-62000 60000-70000	1/2 Ult.	15000 17000	$\begin{cases} \frac{15000}{1 + \frac{l^2}{13500r^2}} & \frac{17000}{1 + \frac{l^2}{11000r^2}} \end{cases}$	$D+\frac{3}{4}B$
Theodore Cooper	1901	54000–62000 60000–68000	½ Ult.	Variable	Straight line-Variable	D+B
The Osborn Eng. Co.	1901	52000-62000 60000-70000	32000 35000	20000 22000	$\begin{cases} \frac{20000}{1+\frac{l^2}{36000r^2}} & \frac{22000}{1+\frac{l^2}{36000r^2}} \end{cases}$	D+B

BUILDING SPECIFICATIONS

Name.	YEAR.	Grade of Steel.	ELASTIC LIMIT.	SAFE TENSION.	SAFE COMPRESSION.	SAFE STRESS COMBINED.
Charles Evan Fowler	1901	55000-65000	1/2 Ult.	15000	$12500 - 41.7 \frac{l}{r}$	
C. C. Schneider	1904	55000-65000	28000	16000	$16000-70$ $\frac{l}{r}$	$D + \frac{3}{4}B$
New York Bldg. Law	1899	54000-64000	32000	16000	$15200-58 \frac{l}{r}$	
Chicago Bldg. Law	1903			15000	15000 reduced)

D = direct stress in pounds per square inch.

B = extreme fiber stress in pounds per square inch.

L.L. = live load.

D.L. = dead load.

(77)

SAFE LOADS OF TWO ANGLES

Short legs outstanding

Safe Loads are based on the New York Building Law Formula, $P = 15200 - 58 \frac{l}{r}$ Safe Loads given are total safe loads in thousand pounds

For sections to the left of the heavy line $\frac{l}{r}$ is less than 120

	TOTAL	SIZE	b. то b.		UN	BRACED	Span in	FEET.		
LEAST. r	AREA.	OF ANGLES.	OF ANGLES.	4	5	6	7	8	9	10
1.49	14.62	$7 \times 3\frac{1}{2} \times \frac{3}{4}$	<u>5</u> 8	194.9	188.1	181.2	174.4	167.6	160.8	153.9
1.48	13.50	$\times \frac{11}{16}$	58	179.8	173.5	167.1	160.8	154.4	148.1	141.7
1.46	12.34	$\times \frac{5}{8}$	<u>5</u> 8	164.0	158.2	152.3	146.4	140.5	134.6	128.7
I.40	11.18	$\times \frac{9}{16}$	$\frac{1}{2}$	147.7	142.1	136.6	131.0	125.5	119.9	114.3
1.39	10.00	$\times \frac{1}{2}$	$\frac{1}{2}$	132.0	127.0	122.0	116.9	111.9	106.9	101.9
1.35	8.80	$\times \frac{7}{16}$	$\frac{7}{16}$	115.6	111.1	106.5	102.0	97.5	92.9	88.4
1.79	13.88	$6 \times 4 \times \frac{3}{4}$	<u>5</u> 8	189.4	184.0	178.6	173.2	167.8	162.4	157.0
1.77	12.82	$\times \frac{11}{16}$	<u>5</u> 8	174.7	169.7	164.6	159.6	154.5	149.5	144.5
1.76	11.72	$\times \frac{5}{8}$	58	159.6	155.0	150.3	145.7	141.1	136.4	131.8
1.70	10.62	$\times \frac{9}{16}$	1/2	144.0	139.7	135.3	131.0	126.6	122.3	118.0
1.69	9.50	$\times \frac{1}{2}$	$\frac{1}{2}$	128.8	124.8	120.9	117.0	113.1	109.2	105.3
1.65	8.36	$\times \frac{7}{16}$	16	113.0	109.5	105.9	102.4	98.9	95.3	91.8
1.62	7.22	Xš	***	97.3	94.2	91.1	88.0	84.9	81.8	78.7
1.56	0.84	5×33× 5	58	132.0	127.6	123.2	°118.8	114.4	110.1	105.7
1.55	8.94	$\times \frac{9}{16}$	12	119.8	115.8	111.8	107.8	103.8	99.8	95.8
1.54	8.00	$\times \frac{1}{2}$	$\frac{1}{2}$	107.1	103.5	99.9	96.3	92.7	89.1	85.4
1.50	7.06	$\times \frac{7}{16}$	$\frac{7}{16}$	94.2	90.9	87.6	84.4	81.1	77.8	.74.5
1.46	6.10	X 38	38	81.1	78.2	75.3	72.4	69.5	66.6	63.6
1.43	5.12	$\times \frac{5}{16}$	$\frac{5}{16}$	67.9	65.4	62.9	60.4	57.9	55.4	52.9
1.24	7.24	$4\times3\times\frac{9}{16}$	9 16	93.8	89.7	85.7	81.6	77.5	73.5	69.4
1.25	6.50	$\times \frac{1}{2}$	$\frac{1}{2}$	84.3	80.7	77.1	73.5	69.8	66.2	62.6
1.25	5.74	$\times \frac{7}{16}$	$\frac{7}{16}$	74.5	71.3	68.1	64.9	61.7	58.5	55.3
1.26	4.96	× 38	38	64.4	61.7	59.0	56.2	53.5	50.7	48.0
1.27	4.18	$\times \frac{5}{16}$	$\frac{5}{16}$	54.4	52.1	49.8	47.5	45.2	42.9	40.6
.91	5.00	$3 \times 2\frac{1}{2} \times \frac{1}{2}$	$\frac{1}{2}$	60.7	56.9	53.1	49.2	45.4	41.6	37.8
.92	4.44	$\times \frac{7}{16}$	$\frac{7}{16}$	54.1	50.7	47.3	44.0	40.6	37.3	33.9
.93	3.84	X 💈	38	46.9	44.0	41.1	38.3	35.4	32.5	29.6
.94	3.24	$\times \frac{5}{16}$	$\frac{5}{16}$	39.7	37.3	34.9	32.5	30.1	27.7	25.3
•95	2.62	× ł	$\frac{5}{16}$	32.1	30.2	28.3	26.4	24.5	22.5	20.6
.77	3.10	21/2×2× 3/8	38	35.9	33.1	30.3	27.5	24.7	21.9	19.1
.78	2.62	$\times \frac{5}{16}$	$\frac{5}{16}$	30.5	28.1	25.8	23.5	21.1	18.8	16.5
.78	2.12	× 1	$\frac{5}{16}$	24.7	22.8	20.9	19.0	17.1	15.2	13.3
•79	1.62	$\times \frac{3}{16}$	4	18.9	17.5	16.1	14.6	13.2	11.8	10.4

(78)

AS COLUMNS OR STRUTS

Short legs outstanding

Safe Loads are based on the New York Building Law Formula, $P = 15200 - 58 \frac{l}{r}$ Safe Loads given are total safe loads in thousand pounds

For sections to the left of the heavy line $\frac{l}{r}$ is less than 120

			UNI	BRACED SI	PAN IN F	EET.					
11	12	14	16	18	20	22	24	26	28	30	
147.1 135.4 122.9 108.8 96.9 83.9 151.6 139.4 127.2 113.6 101.4 88.3 75.6 101.3	140.3 129.0 117.0 103.2 91.9 79.3 146.2 134.4 122.5 109.3 97.4 84.8 72.5 96.9	126.6 116.3 105.2 92.1 81.9 70.2 135.4 124.3 113.3 100.6 89.6 77.7 66.3 88.1	113.0 103.6 93.4 81.0 71.9 61.2 124.6 114.2 104.0 91.9 81.8 70.7 60.1 79.3	99.3 90.9 81.7 69.9 61.9 52.1 113.8 104.1 94.7 83.2 74.0 63.6 53.9 70.5	85.6 78.2 69.9 58.8 51.9 43.0 103.0 94.0 85.4 74.5 66.1 56.5 47.6	72.0 65.5 58.1 47.7 41.8 34.0 92.2 84.0 76.2 65.9 58.3 49.5 41.4 53.0	58.3 52.8 46.4 36.5 31.8 24.9 81.4 73.9 66.9 57.2 50.5 42.4 35.2 44.2	44.7 40.1 34.6 25.4 21.8 15.8 70.7 63.8 57.6 48.5 42.7 35.4 29.0	59.9 53.7 48.4 39.8 34.8 28.3 22.8	49.1 43.6 39.1 31.1 27.0 21.3 16.6	
91.7 81.8 71.3. 60.7 50.4 65.4 59.0 52.1 45.3 38.3	87.7 78.2 68.0 57.8 47.9 61.3 55.4 48.9 42.5 36.1	79.7 71.0 61.4 52.0 42.9 53.2 48.1 42.5 37.0 31.5	71.7 63.8 54.9 46.2 38.0 45.0 40.9 36.1 31.6 26.9	63.6 56.5 48.3 40.4 33.0 36.9 33.7 29.7 26.1 22.3	55.6 49.3 41.8 34.6 28.0 28.8 26.4 23.3 20.6 17.7	47.6 42.1 35.2 28.7 23.0	39.6 34.8 28.7 22.9 18.0	31.5 27.6 22.1 17.1 13.0			
33-9 30.6 26.8 22.9 18.7	30.1 27.2 23.9 20.5 16.8	22.5 20.5 18.1 15.7 12.9	-								

3

A

SAFE LOADS OF ANGLE AND PLATE COLUMNS. 8-INCH PLATES

84'' b. to b. of angles, for 6 × 4 angles 84'' b. to b. of angles, for 5 × 4 and 4 × 3 angles Long legs of angles outstanding Long legs of angles outstanding Safe loads are based on New York Building Law Formula Safe loads given are total safe loads in thousand pounds For sections to the left of the heavy line, $\frac{1}{r}$ is less than roo

1		,	1 .					-	-	-								_		
		26	200	2 290	2.44.5	215.1	194.3	168.8	144.7											
		24	1010	280.0	258.0	228.1	206.2	170.4	153.9											
		22	220.2	206.3	273.4	241.1	218.2	1.001	163.2											
		20	246.0	211.7	287.8	254.0	230.I	200.7	172.4	224.4	107.2	178.6	155.3	132.6	110.4	1				
	FET.	18	262.6	327.1	302.3	267.0	242.1	211.4	181.7	230.5	210.8	I.IOI	166.6	142.5	118.7					
	AN IN	91	270.4	3.42.5	316.7	279.9	254.0	222.I	0.191	254.6	224.3	203.7	7.771	152.3	127.0	165.0	150.8	131.3	s.III	92.6
	ACED SI	14	306.1	357.0	331.2	292.9	266.0	232.7	200.2	269.7	237.8	216.2	189.I	162.2	135.4	180.3	164.3	143.3	122.3	L.IOI
	UNBR	13	404.4	365.6	338.4	299.4	271.9	238.1	204.9	277.2	244.6	222.5	194.7	1.701	139.5	187.5	0.171	140.4	127.6	106.2
		12	412.8	373.3	345.6	305.9	277.9	243.4	209.5	284.7	251.4	228.8	200.3	172.0	143.7	194.7	177.7	155.4	132.9	110.8
		II	421.2	381.0	352.8	312.4	283.9	248.7	214.1	292.3	258.1	235.0	205.9	176.9	147.8	201.9	184.4	161.4	138.2	115.3
		01	429.5	388.7	360.1	318.8	289.9	254.0	218.8	299.7	264.9	241.3	211.6	181.8	152.0	209.0	191.2	167.4	143.5	8.011
	-	6	437.9	396.4	367.3	325.3	295.8	259.4	223.4	307.3	271.7	247.6	217.2	186.8	156.2	216.2	6.761	173.5	148.8	124.3
-	Α.		2.81	2.77	2.74	2.71	2.68	2.64	2.62	2.28	2.25	2.22	2.18	2.15	2.13	1.79	1.76	1.73	1.70	1.67
	Axis A	П	265.63	235.76	213.06	185.61	165.02	141.26	119.27	127.99	110.80	98.41	83.91	70.57	57.65	59.34	52.74	44.61	37.24	30.31
F	m	-	3.20	:	:	:	•	:	3.33	3.15	:	•	•	:	3.25	3.18	:	:	•	3.26
	Axis B		345.68	320.02	299.78	271.94	248.34	222.04	193.81	244.37	221.65	202.91	181.87	158.77	134.72	187.28	172.15	154.30	134.68	114.60
-	TOTAL AREA.		33.76	30.64	28.44	25.24	23.00	20.22	17.44	24.68	21.88	20.00	17.62	15.20	12.74	18.48	00.71	14.98	12.92	10.86
•2	PLAT	OF	014	8000	00/04	-(63 -	-(ca r	16	1 00	80/06	-(03		16	rojao a	16		-(01	16	coloo	16
	SIZE OF ANGLES.		$6 \times 4 \times \frac{3}{4}$	×H	× 3	XIG	*** r	×16	sixe X	5×31× 8	XII	-⊧¤ , ×	× 16	, ooke X	× 18	$4\times3 \times_{16}^{9}$	×	XIG	X	$\times \frac{5}{16}$
						(80)			-										

8

SAFE LOADS OF ANGLE AND PLATE COLUMNS. 12-INCH PLATES

r2½' b. to b. of angles, long legs outstanding Safe loads are based on New York Building Law Formula Safe loads given are total safe loads in thousand pounds

For sections to the left of the heavy line $\frac{l}{r}$ is less than 120

9

-- V

				_																	
	26	3.115	279.1	256.6	225.2	204.0	177.4	151.3													
	24	330.5	296.4	273.0	239.7	217.5	189.5	161.8													
	22	349.5	313.7	289.5	254.2	231.1	201.5	172.3													
	20	368.5	331.0	305.0	268.8	244.6	213.5	182.8		238.8	208.4	189.0	164.8	141.0	116.7						
BRT.	18	387.5	348.2	322.3	283.3	258.1	225.6	193.3		256.2	223.8	204.4	177.8	152.3	126.3						
AN IN F	91	406.6	365.5	338.8	297.8	271.7	237.6	203.9		273.7	239.3	218.8	190.7	163.6	135.9		177.1	162.1	140.0	119.4	98.7
CED SP.	14	425.6	382.8	355.2	312.4	285.2	249.7	214.4		291.1	254.8	233.3	203.7	174.8	145.5		193.9	6.771	154.3	131.9	109.4
UNBRA	13	435.1	391.4	363.4	319.6	292.0	255.7	219.6		299.8	262.5	240.5	210.1	180.5	150.3		202.3	185.9	161.4	138.1	114.7
	12	444.6	400.I	371.7	326.9	298.8	261.7	224.9		308.5	270.2	247.7	216.6	186.1	155.1		210.7	193.8	168.6	144.4	120.1
	II	454.1	408.7	379-9	334.1	305.5	267.7	230.1		317.2	277.9	255.0	223.1	8.191	159.9		219.1	201.7	175.7	150.6	125.4
	IO	463.6	417.3	388.I	341.4	312.3	273.7	235.4		326.0	285.7	262.2	229.6	197.4	164.7		227.4	209.6	182.9	156.8	130.7
	6	473.1	426.0	396.3	348.7	319.1	279.8	240.6		334.7	293.4	269.4	236.1	203.	169.5		235.8	217.5	0.061	163.1	136.1
AA.	ы	2.69	2.67	2.62	2.61	2.57	2.54	2.51		2.17	2.15	2.12	2.08	2.06	2.03		1.70	70.1	I.63	10.1	1.58
Axis /	I	265.77	235.84	213.14	185.65	165.06	141.29	119.29		128.07	110.85	98.46	83.94	70.59	57.66		59.40	52.78	44.64	37.25	30.32
BB.	5.	4.8I	•	:	:	:	•	4.94		4.84	•	•	•	•	4.94		4.87	•	•	•	4.91
Axis I	I	849.27	780.21	728.56	655.35	598.08	531.44	461.81		636.36	572.35	523.34	465.96	404.91	341.90		485.56	446.16	397.24	345.08	292.23
TOTAL	AKEA.	36.76	33.14	30.94	27.24	25.00	21.97	18.94	1	27.18	23.88	22.00	19.37	16.70	13.99	(20.48	00.QI	16.73	I4.42	12.11
TATE.	T HIC	est-# 1	ciao a	ciao 1	-101	-101	16	ooloo	1	nolati 1	-109	-101	16	colao	16	,	-(01	-103	16	ogen	16
SIZE OF	ANGLES.	$6\times 4 \times \frac{3}{4}$	₩× ×	ciao a	×1%	X	× 16	inine X		5×3½× 8	×18	X	$\times \frac{1}{16}$	entaco X	×18		4×3 ×16	×	× ₇₆	X	$\times_{1^{\frac{n}{6}}}$

(81)

SAFE LOADS FOR ANGLE AND PLATE COLUMNS. 18-INCH PLATES

184 b. to b. of angles, long legs outstanding Safe loads are based on New York Building Law Formula Safe loads given are total safe loads in thousand pounds

For sections to the left of the heavy line, $\frac{\ell}{x}$ is less than 120

SIZE OF	TATE. KNESS	TOTAL	Axis B	·B.	AXIS 1	AA.		'	D	NBRACE	D SPAN	IN FEE	2		
ANGLES.	ов Р	AREA.	Ι	4	I	3	0I	12	14	91	18	20	22	24	26
e													6	0	
0×4× 4	941	41.20	2195.90	7.30	205.98	2.54.	514.1	491.5	405.9	440.3	423.7	401.0	378-4	355.8	333.2
×H	10/00	36.89	2003.92	•	235.97	2.53	459.2	438.9	418.7	398.4	378.1	357.8	337.5	317.2	296.9
X	scice	34.69	1869.83	:	213.27	2.48	429.8	410.3	390.8	371.3	351.8	332.3	312.8	293.3	273.8
$\times \frac{9}{16}$	-(03	30.24	1669.36	•	185.71	2.48	374.8	357.8	340.8	323.9	306.9	289.9	273.0	256.0	239.0
× 403	-(01	28.00	I525.47	:	165.12	2.43	345.4	329.4	313.3	297.3	281.2	265.2	249.2	233.1	217.1
$\times \frac{7}{16}$	$\frac{7}{16}$	24.60	I349.70	•	141.33	2.40	302.6	288.3	274.0	259.8	245.5	231.2	217.0	202.7	188.4
*	00(00	21.19	1169.25	7-43	119.32	2.37	259.9	247.4	235.0	222.5	210.1	197.6 I	185.2	172.7	160.3
5×31× 8	ac)ca	30.93	1638.30	7.28	128.19	2.04	364.6	343.5	322.4	301.3	280.2	259.1			
X ⁹ ₁₆		26.88	1461.59	•	10.011	2.03	316.4	298.0	279.5	261.1	242.7	224.3			
×		25.00	1338.98	:	98.52	1.99	292.6	275.1	257.6	240.1	222.6	205.1			
$\times \frac{7}{16}$	16	22.00	1187.02	:	83.98	I.95	255.9	240.2	224.5	208.8	193.1	177.4			
X	ec 00	18.95	1028.35	•	70.62	I.93	219.7	206.0	192.4	178.7	165.0	151.4			
$\times \frac{5}{16}$	16	15.87	865.64	7.39	57.67	16.1	183.4	171.8	1 60.3	148.7	137.1	125.6			

(82)

		26	351.9	312.6	289.0	250.4	228.4	L.701	168.6						
		24	378.4	330.0	312.2	270.0	247.0	214.3	183.0						
		22	404.8	359.5	334.9	289.0	265.7	230.9	197.5						
	IN FEET	20	431.2	383.0	357.6	309.2	284.4	247.6	211.9	275.7	238.7	218.3	189.0	0.101	132.5
	D SPAN	18	457.7	406.5	380.2	328.8	303.1	264.2	226.3	300.8	260.2	239.0	207.5	1.77.1	146.2
	NBRACE	16	484.I	429.9	402.9	348.4	321.8	280.8	240.8	326.0	281.8	259.8	226.0	193.2	159.9
	Ð	14	510.5	453.4	425.6	368.0	340.4	297.4	255.2	351.1	303.3	280.5	244.6	209.4	173.6
		12	537.0	476.9	448.3	387.6	359.1	314.0	269.7	376.3	324.9	301.2	263.1	225.5	187.3
		10	563.4	500.4	470.9	407.2	377.8	330.6	284.1	401.4	346.4	321.9	281.6	241.6	201.1
	AA.		2.41	2.41	2.36	2.36	2.31	2.28	2.26	1.92	I.93	I.88	1.85	I.83	1.80
	Axis	I	266.19	236.09	213.39	185.78	165.18	141.38	119.34	128.31	110.07	98.58	84.03	70.64	57.69
	B.	ы	9.68	•	•	•	•	•	9.82	9.60	•	•	•	. •	9.72
	Axis F	I	4285.22	3891.65	3635.52	3227.70	2956.86	2610.67	2258.11	3196.97	2834.67	2604.62	2303.99	1992.90	1674.96
	TOTAL	AREA.	45.76	40.64	38.44	33.24	31.00	27.22	23.44	34.68	29.88	28.00	24.62	21.20	17.74
Ø	LATE. KNESS	Тнісі Ов Р	c3/44	ac(30	acioc	(03	(03	$\frac{7}{16}$	esiao	najac	-(0)	-(0)	16	esiao	16
	SIZE OF	ANGLES.	6×4× 3	*H×	X	$\times \frac{9}{16}$	×	$\times \frac{7}{16}$	X	5×3 ¹ / ₈ × ⁵ / ₈	$\times \frac{9}{16}$	-403 ×	$\times \frac{7}{16}$	estac ×	$\times \frac{5}{16}$

(83)

SAFE LOADS OF ANGLE AND PLATE COLUMNS. 24-INCH PLATES. TABLE 36

244" b. to b. of angles, long legs outstanding

Safe loads are based on New York Building Law Formula Safe loads given are total safe loads in thousand pounds For sections to the left of the heavy line, $\frac{1}{2}$ is less than 120

SAFE LOADS FOR

Safe loads are based on New York Building Law Formula Safe loads given are total safe loads in thousand pounds For sections to the left of the heavy line, $\frac{l}{r}$ is less than 120 d = Distance back to back in inches to make r equal about both axes

SI CH	ZE OF ANNEL.	Torut			τ	JNBRACED S	Span in Fei	ET.
Depth.	Weight.	AREA.	Axis BB.	d.	8	10	12	14
15	55	32.36	5.16	8.53	457.0	448.2	439.5	430.8
	50	20.42	5.23	8.71	415.9	408.0	400.2	392.4
	45	26.48	5.32	8.92	374.8	367.8	360.9	354.0
"	40	23.52	5.43	9.15	333.4	327.4	321.3	315.3
"	35	20.58	5.58	9.43	292.3	287.1	282.0	276.8
"	33	19.80	5.62	9.50	281.3	276.4	271.5	266.6
12	40	23.52	4.09	6.60	325.5	317.5	309.5	301.5
66	35	20.58	4.17	6.81	285.3	278.5	271.6	264.7
"	30	17.64	4.28	7.07	245.2	239.4	233.7	228.0
"	25	14.70	4.43	7.36	205.0	200.3	195.7	191.1
"	20.50	12.06	4.61	7.67	168.7	165.1	161.5	157.8
10	25	14.70	3.52	5.67	200.2	194.4	188.6	182.7
**	20	11.76	3.66	5.97	160.9	156.4	151.9	147.4
**	15	8.92	3.87	6.33	122.7	119.5	116.3	113.1
9	20	11.76	3.21	5.12	158.3	153.2	148.2	143.1
"	15	8.82	3.40	5.49	119.6	116.0	112.4	108.8
"	13.25	7.78	3.49	5.63	105.8	102.7	99.6	96.5
8	16.25	9.56	2.89	4.54	126.9	122.3	117.7	113.1
"	13.75	8.08	2.98	4.72	107.7	103.9	100.2	96.4
"	11.25	6.70	3.11	4.94	89.8	86.8	83.8	80.8
7	14.75	8.68	2.50	3.80	112.6	107.8	102.9	98.1
"	12.25	7.20	2.59	3.99	94.0	90.1	86.2	82.4
"	9.75	5.70	2.72	4.22	75.0	72.1	69.1	66.2
6	13	7.64	2.13	3.09	96.2	91.2	86.2	81.2
**	10.50	6.18	2.21	3.28	78.4	74.5	70.6	66.7
	8	4.76	2.34	3.52	61.0	58.2	55-4	52.5
5	9	5.30	1.83	2.56	64.4	60.4	56.4	52.3
"	6.50	3.90	1.95	2.79	48.1	45.4	42.6	39.8
4	5.25	3.10	1.56	2.06	36.1	33.3	30.5	27.8

(84)

TABLE 37 (Continued)

LACED CHANNEL COLUMNS

Safe loads are based on New York Building Law Formula Safe loads given are total safe loads in thousand pounds For sections to the left of the heavy line, $\frac{l}{r}$ is less than 120 d = Distance back to back in inches to make r equal about both axes

		U	NBRACED SPA	AN IN FEET.			
16	18	20	22	24	26	28	30
422.0	413.3	404.6	395.9	387.1	378.4	369.7	360.9
347.1	340.1	333.2	326.3	310.4	312.4	305.5	208.6
300.3	303.2	207.2	201.2	285.1	270.1	273.1	267.1
271.7	266.6	261.5	256.3	251.2	246.1	240.0	235.8
261.7	256.8	251.9	247.0	242.1	237.2	232.3	227.4
293.5	285.5	277.5	269.5	261.5	253.5	245.4	237.4
257.9	251.0	. 244.I	237.2	230.4	223.5	216.6	209.8
222.2	216.5	210.8	205.0	199.3	193.5	187.8	182.1
186.5	181.9	177.3	172.6	168.0	163.4	158.8	154.2
154.2	150.5	146.9	143.3	139.6	136.0	132.3	128.7
176.9	171.1	165.3	159.5	153.7	147.9	142.1	136.2
143.0	138.5	134.0	129.6	125.1	1 20.6	116.1	111.7
109.9	106.7	103.5	100.3	97.1	93.9	90.7	87.5
138.0	132.9	127.8	122.7	117.6	112.5	107.4	102.3
105.2	101.6	98.0	94.3	90.7	87.1	83.5	79.9
93-4	90.3	87.2	84.1	81.0	77.9	74.8	71.7
108.5	103.9	99.3	94.7	90.1	85.4	80.8	
92.6	88.8	85.1	81.3	77.5	73.8	70.0	
77.9	74.9	71.9	68.9	65.9	62.9	59-9	56.9
93.3	88.4	83.6	78.8	73.9			
78.5	74.0	70.7	00.9	03.0	0		
63.3	60.4	57.5	54.6	51.6	48.7		
76.2	71.2	66.2					
62.8	58.9	55.0	51.1				
49.7	46.9	44.0	41.2				
48.3	44.3						
37.0	34.2						

STRESS DUE TO WEIGHT OF SECTION

The extreme fiber stress due to the weight of a member may be determined by the formula given below. The general formula and table are based on the member acting as a beam supported at The bending produced for the horizontal span L is the same whether the member the two ends. is horizontal or inclined.

Let

R = extreme fiber stress in pounds per square inch,

L = simple horizontal span in feet,

r = radius of gyration of section about axis at right angles to load,

e = distance in inches from neutral axis to extreme fiber in question, $R = \frac{5 \cdot 1 \ eL^2}{2}.$

Then

r² Since bending produces compression in the upper fiber and tension in the lower fiber; for members having direct compressive stress, R for the upper fiber is added to the direct compression in pounds per sq. in.; for members having direct tensile stress, R for the lower fiber is added to the

direct tension in pounds per sq. in. See combined stresses under specifications. In the above formula R varies directly as e and inversely as r^2 ; it is therefore important that r should be as large as possible and that e should be as small as possible for a given section. The following table gives values of R for tension and compression members. For angles sub-

ject to direct compression the angle is placed thus For angles subject to direct tension the angle is placed thus

STRESS DUE TO WEIGHT FOR ANGLES

EXTREME FIBER STRESS IN POUNDS PER SQUARE INCH

SIZE	.v.						Sin	IPLE H	ORIZON	TAL S	PAN IN	FEET	•			
OF ANGLE.	Are	e	r	6	8	10	12	14	16	18	20	22	24	26	28	30
	5.86	2.03	1.90	100	180	290	410	560	740	930	1150	1390	1650	1940	2250	2580
	4.75	1.99	1.91	100	180	280	400	550	710	900	1110	1350	1600	1880	2180	2500
	4.18	1.96	1.92	100	170	270	390	530	690	880	1080	1310	1560	1830	2120	2440
	3.61	1.94	1.93	100	170	270	380	520	680	860	1060	1280	1530	1790	2080	2390
$\begin{array}{c} 5\times3\frac{1}{2}\times\frac{1}{2}\\\times\frac{7}{16}\\\times\frac{3}{8}\\\times\frac{5}{16}\end{array}$	4.00 3.53 3.05 2.56	1.66 1.63 1.61 1.59	1.58 1.59 1.60 1.61	120 120 120 120 110	220 210 210 200	340 330 320 310	490 470 460 450	660 650 630 610	870 840 820 800	1100 1070 1040 1010	1360 1320 1280 1250	1640 1590 1550 1520	1950 1900 1850 1800	2290 2220 2170 2120	2660 2580 2520 2450	3050 2960 2890 2820
$\begin{array}{c} 4 \times 4 \times \frac{1}{2} \\ \times \frac{7}{16} \\ \times \frac{33}{5} \\ \times \frac{5}{16} \end{array}$	3.75	1.18	1.22	150	260	400	580	790	1030	1310	1620	1960	2330	2730	3170	3640
	3.31	1.16	1.23	140	250	390	560	770	1000	1270	1560	1890	2250	2640	3070	3520
	2.86	1.14	1.23	140	250	380	550	750	980	1240	1540	1860	2210	2600	3010	3460
	2.40	1.12	1.24	130	240	370	530	730	950	1200	1480	1800	2140	2510	2910	3340
$\begin{array}{c} 4 \times 3 \hspace{0.1 cm} \times \frac{7}{16} \\ \times \hspace{0.1 cm} \frac{3}{8} \\ \times \hspace{0.1 cm} \frac{5}{16} \end{array}$	2.87	1.30	1.25	150	270	420	610	830	1090	1370	1700	2050	2440	2870	3320	3820
	2.48	1.28	1.26	150	260	410	590	810	1050	1330	1640	1990	2370	2780	3220	3700
	2.09	1.26	1.27	140	260	400	570	780	1020	1290	1590	1930	2290	2690	3120	3580
$3 \times 3 \times \frac{3}{8} \times \frac{5}{16} \times \frac{1}{4}$	2.11	.89	.91	200	350	550	790	1070	1400	1780	2190	2650	3160	3700	4300	4930
	1.78	.87	.92	190	340	520	750	1030	1340	1700	2100	2540	3020	3540	4110	4720
	1.44	.84	.93	180	320	500	710	970	1270	1600	1980	2400	2850	3350	3880	4460
$3 \times 2\frac{1}{2} \times \frac{3}{8} \times \frac{5}{16} \times \frac{1}{4}$	1.92	.96	•93	200	360	570	820	1110	1450	1830	2260	2740	3260	3830	4440	5090
	1.62	.93	•94	190	340	540	770	1050	1380	1740	2150	2600	3090	3630	4210	4830
	1.31	'.91	•95	190	330	510	740	1010	1320	1670	2060	2490	2960	3470	4030	4630
$2\frac{1}{2} \times 2 \times \frac{5}{16} \times \frac{1}{4}$	1.31	.81	.78	240	440	680	980	1330	1740	2200	2720	3290	3910	4590	5320	6110
	1.06	•79	.78	240	420	660	950	1300	1700	2150	2650	3200	3810	4480	5190	5960

TABLE 39 (Continued on pages 88 and 89)

AREA OF ONE PLATE

			_				_					 					 				
I	60.00	59.00	58.00	57.00	56.00		55.00	54.00	53.00	52.00	51.00	50.00	49.00	48.00	47.00	46.00	45.00	44.00	43.00	42.00	41.00
15 16	56.25	55.31	54.38	53.44	52.50		51.56	50.63	49.69	48.75	47.81	46.88	45.94	45.00	44.06	43.13	42.19	41.25	40.31	39.38	38.44
1-100	52.50	51.63	50.75	49.88	49.00	¢	48.13	47.25	46.38	45.50	44.63	43.75	42.88	42.00	41.13	40.25	39.38	38.50	37.63	36.75	35.88
13	48.75	47.94	47.13	46.31	45.50		.44.69	43.88	43.06	42.25	41.44	40.63	39.81	39.00	38.19	37.38	36.56	35.75	34.94	34.13	33.31
e2 14	45.00	44.25	43.50	42.75	42.00		41.25	40.50	39.75	39.00	38.25	37.50	36.75	36.00	35.25	34.50	33.75	33.00	32.25	31.50	30.75
H H	41.25	40.56	39.88	39.19	38.50		37.81	37.13	36.44	35-75 .	35.06	34.38	33.69	33.00	32.31	31.63	30.94	30.25	29.56	28.88	28.19
voior [u]	37.50	36.88	36.25	35.63	35.00		34.38	33.75	33.13	32.50	31.88	31.25	30.63	30.00	29.38	28.75	28.13	27.50	26.88	26.25	25.63
s of PLAT	33.75	33.19	32.63	32.06	31.50		30.94	30.38	29.81	29.25	28.69	28.13	27.56	27.00	26.44	25.88	25.3I	24.75	24.19	23.63	23.06
THICKNES	30.00	29.50	29.00	28.50	28.00		27.50	27.00	26.50	26.00	25.50	25.00	24.50	24.00	23.50	23.00	22.50	22.00	21.50	21.00	20.50
7 16	26.25	25.81	25.38	24.94	24.50		24.06	23.63	23.19	22.75	22.3I	21.88	21.44	21.00	20.56	20.13	69.61	19.25	18.81	I8.38	17.94
co(00	22.50	22.13	21.75	21.38	21.00		20.03	20.25	19.88	19.50	19.13	18.75	18.38	18.00	17.63	17.25	16.88	16.50	16.13	15.75	15.38
16 16	18.75	18.44	18.13	17.81	17.50		61.71	I6.88	16.56	16.25	15.94	15.63	15.31	I5.00	14.69	14.38	14.06	13.75	I 3.44	13.13	12.81
(4	15.00	14.75	14.50	14.25	14.00		13.75	13.50	13.25	13.00	12.75	12.50	12.25	12.00	11.75	11.50	11.25	11.00	10.75	10.50	10.25
e ^r ia G	11.25	11.06	10.88	10.69	10.50		10.31	10.13	9-94	9.75	9.56	9.38	9.19	9.00	8.81	8.63	8.44	8.25	8.06	7.88	69.1
+:>0	7.50	7.38	7.25	7.13	7.00	0	6.83	6.75	6.63	6.50	6.38	6.25	6.13	6.00	5.88	5.75	5.63	5.50	5.38	5-25	5.13
16	3.75	3.69	3.63	3.56	3.50		3.44	3.33	3.31	3.25	3.19	3.13	3.06	3.00	2.94	2.88	2.81	2.75	2.69	2.63	2.56
PLATF.	60	59	58	57	56		22	54	53	52	51	50	49	48	47	46	45	44	43	42	41

(87)

TABLE 39 (Continued)

AREA OF ONE FLATE

	н	40.00	38.00	37.00	36.00	35.00	34.00	33.00	32.00	31.00	30.00	29.00	28.00	27.00	26.00	25.00	24.00	23.00	22.00	21.00
	<u>15</u> 16	37.50	35.63	34.69	33.75	32.81	31.88	30.94	30.00	29.06	28.13	27.19	26.25	25.31	24.38	23.44	22.50	21.56	20.63	19.60
	84 1 30	35.00	33.25	32.38	31.50	30.63	29.75	28.88	28.00	27.13	26.25	25.38	24.50	23.63	22.75	21.88	21.00	20.13	19.25	18.38
	$\frac{13}{16}$	32.50	30.88	30.06	29.25	28.44	27.63	26.81	26.00	25.19	24.38	23.56	22.75	21.94	21.13	20.21	10.50	18.60	17.88	17.06
	coj-ai	30.00	28.50	27.75	27.00	26.25	25.50	24.75	24.00	23.25	22.50	21.75	21.00	20.25	19.50	18.75	18.00	17.25	16.50	15.75
	14	27.50 26.81	26.13	25.44	24.75	24.06	23.38	22.69	22.00	21.31	20.63	19.94	19.25	18.56	17.88	17.10	16.50	15.81	15.13	14.44
	NC/OD	25.00	23.75	23.13	22.50	21.88	21.25	20.63	20.00	19.38	18.75	18.13	17.50	16.88	16.25	тк.62	15.00	14.28	13.75	13.13
DF PLATE.	16	22.50	21.38	20.81	20.25	69.61	19.13	18.56	18.00	17.44	16.88	16.31	15.75	15.19	14.63	14.06	12.50	12.04	12.38	11.81
ICKNESS 0	-67	20.00	00.01	18.50	18.00	17.50	17.00	16.50	. 16.00	15.50	15.00	14.50	14.00	13.50	13.00	12.60	12.00	11.50	00.11	10.50
TB	$\frac{7}{16}$	17.50	17.00 16.63	16.19	15.75	15.31	14.88	14.44	14.00	13.56	13.13	12.69	12.25	11.81	11.38	10.01	10.50	00.0I	9.63	0.10
	୧୯)୦୦	15.00	14.03	13.88	13.50	13.13	12.75	12.38	12.00	11.63	11.25	10.88	10.50	10.13	9-75	0.28	00.0	8.62	8.25	7.88
	1 <u>6</u>	12.50	12.19 11.88	11.56	11.25	10.94	10.63	10.31	I0.00	69.6	0.38	90.0	8.75	8.44	8.13	7.81	7.50	0I.7	6.88	6.56
	-14	10.00	9.75 9.50	9.25	0.00	8.75	8.50	8.25	8.00	7.75	7.50	7.25	7.00	6.75	6.50	6.25	6-00	5.75	5.50	5.25
	3 16	7.50	7.13	6.94	6.75	6.56	6.38	6.19	6.00	5.81	5.63	5.44	5.25	5.06	4.88	1.60	4.50	4.31	4.13	3.04
	-100	5.00	4-75	4.63	4.50	4.38	4.25	4.13	4.00	3.88	3.75	3.63	3.50	3.38	3.25	2.12	2.00	2.88	2.75	2.63
	16 16	2.50	2.38	2.31	2.25	2.19	2.13	2.06	2.00	1.94	1.88	1.81	1.75	1.69	I.63	1.26	1.50	1.44	I.38	1.31
	WIDTH OF TAL	40	38 30	37	36	35	34	33	32	31	30	29	28	27	26	л И	24	53	52	21

(88)

AREA OF ONE PLATE

H	•3							T	HICKNESS	OF PLATE							
raiW	PLAT	Iå	(s0	16	44	16	caloo	1^{T}_{6}	142	16	adioo	Ħ	ব্যেক	00	1-40C	15	г
	0	1.25	2.50	3.75	5.00	6.25	7.50	8.75	10.00	11.25	12.50	13.75	15.00	16.25	17.50	18.75	20.00
-	6	01.I	2.38	3.56	4.75	5.94	7.13	8.31	9.50	10.69	11.88	13.06	14.25	15.44	16.63	17.81	19.00
-	õ	1.13	2.25	3.38	4.50	5.63	6.75	7.88	0.00	10.13	11.25	12.38	13.50	14.63	15.75	16.88	18.00
-	2	1.06	2.13	3.19	4.25	5.31	6.38	7.44	8.50	9.56	10.63	69.11	12.75	13.81	14.88	15.94	17.00
	2	I.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	0.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00
	v	10	1.88	2.81	1 1 1	y you	r 63	9-9		8	8,0	TC OI	10 11	OT OT		9011	
-	4	88	1.75	2.63	3.50	4.28	5.25	6.12	00.7	7.88	8.75	10.62	C2.41	11.28	12.25	12.12	14.00.
-	3	.81	1.63	2.44	3.25	4.06	4.88	5.69	6.50	7.31	8.13	8.04	0.75	10.56	11.38	12.19	13.00
-	13	.75	1.50	2.25	3.00	3.75	4.50	5.25	6.00	6.75	7.50	8.25	0.00	9.75	10.50	11.25	12.00
(80	:	-69	I.38	2.06	2.75	3.44	4.13	4.81	5.50	6.19	6.88	7.56	8.25	8.94	9.63	10.31	11.00
)																	
_	0	.63	1.25	1.88	2.50	3.13	3.75	4.38	5.00	5.63	6.25	6.88	7.50	8.13	8.75	9.38	10.00
	0	.56	I.I3	1.69	2.25	2.81	3.38	3.94	4.50	5.06	5.63	6.19	6.75	7.31	7.88	8.44	0.00
	00	.50	I.00	I.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00
-	~	•44	.88	1.31	1.75	2.19	2.63	3.06	3.50	3.94	4.38	4.81	5.25	5.69	6.13	6.56	2.00
	0	38	.75	1.13	I.50	I.88	2.25	2.63	3.00	3.38	3.75	4.13	4.50	4.88	5.25	5.63	6.00
															•		
	ŝ	.31	.63	-94	1.25	I.56	I.88	2.19	2.50	2.81	3.13	3.44	3.75	4.06	4.38	4.69	5.00
	4	•25	•50	.75	I.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00
	e	.19	.38	.56	.75	-94	1.13	1.31	1.50	1.69	1.88	2.06	2.25	2.44	2.63	2.81	3.00
_	3	.13	.25	•38	.50	.63	.75	.88	I.00	1.13	1.25	I.38	I.50	I.63	1.75	1.88	2.00
	н	.06	.13	61.	-25	.31	•38	•44	.50	.56	.63	69.	.75	.81	.88	-94	1.00
	est	L C	8	, i	¢ F	ç	0,0	ç	0,		1	1	Y.	. 4	99	(L	l t
-	+ -	<u>.</u>	5	† -	61.	°z∙ ,	07.	•33	• • • •		.4.	z.c.	°.	10.	<u>,</u>	0/-	c/.
	(C1 p	•03	00.	60.	.13	01.	.17	.22	-25	.28	•31	.34	.38	.4I	•44	-47	•50
	4	•02	•03	-05	.00	.0% 80.	60.	11.	•13	•I4	9I°	L1.	61.	•20	.22	.23	-25

TABLE 39 (Continued)

AREA IN SQUARE INCHES DEDUCTED FOR ONE HOLE

	And in case of the local division of the loc	And in case of the local division of the loc	-	-	Summer of the local division of the local di		_	Summer of	distant in succession.	_	And in case of the local division of	_	_	_	and the second s	-	_		_	_		-	_		_				
	I	.063	.125	.188	.250		.313	.375	.438	•500	ch2	C^C.	.025	.688	.750		.813	.875	.938	1.000		1.003	1.125	I.188	1.250	1.313	1.375	I.438	1.500
	16	.059	·117	.176	.234		.293	.352	.410	.469	102	1-0.	.580	.645	.703		.762	.820	.879	.938		966.	1.055	1.113	1.172	I.230	1.289	I.348	I.406
	24-1	.055	601.	.164	.219		.273	.328	.383	.438	102	-44.	.547	.602	.656		-711	.766	.820	.875		-930	-984	1.039	I.094	I.148	1.203	I.258	I.313
	13	.05I	.102	.152	.203		-254	.305	.355	.406	467	101.	.500	.559	609.		.660	.711	.762	.813	- 20	.803	-914	-965	010.1	1.066	711.1	I.168	1.219
	01 4	.047	.004	.141	.188		.234	.281	.328	.375	-422		.409	.516	.563	-	609.	.656	.703	.750	1	167.	-844	168.	.938	.984	1.031	1.078	1.125
IES.	11	.043	.086	.129	.172	1.10	-215	.258	.301	.344	.287		-430	.473	.516		.559	.602	.645	.688		.730	.773	.816	.859	-902	-945	986.	1.031
IN INCH	oojeu	.039	.078	.117	.156	10.4	\$61.	.234	.273	.313	.352	TC-	•391	.430	.469		.508	-547	.586	.625	66.	·004	.703	.742	.781	.820	.859	898.	-938
F HOLE	<u>16</u>	.035	020.	.105	.141	944	0/11	.211	.246	.281	.316	010	.352	.387	.422		.457	.492	.527	.563	001	-290	.633	.668	.703	.738	.773	908.	.844
METER C	-104	.03I	.063	-094	.125	444	051.	.188	.219	.250	.281	010	.315	.344	.375		.406	-438	.469	.500	re 1	.531	.563	.594	.625	.656	.688	617.	.750
DIA	16	.027	-055	.082	.109	401	121.	.164	161.	.219	.246	0 40	\$12.	.301	.328		.355	.383	.410	.438	- 44	-405	-492	.520	.547	.574	.602	.629	.656
	000	.023	.047	020.	.094	411	/11.	.141	.164	.188	.211	100	•234	.258	.281		.305	.328	.352	.375	202	.390	.422	.445	-469	-492	.516	.539	.563
	16	.020	.039	.059	.078	800	nhn.	411.	.137	.156	.176	101	C61.	.215	.234		.254	.273	.293	.313		.332	.352	.371	.391	.410	.430	-449	.469
	++	010.	.03I	.047	.063	078	n/n.	.094	601.	.125	.141	1001	NG1.	.172	.188		.203	.219	.234	.250	266	002.	.281	-297	.313	.328	.344	.359	.375
	16	.012	.023	.035	-047	010	60.	020.	.082	• 004	.105	- 1 I	1.44.	.129	.141		.152	.164	.176	.188	TOO	661.	.211	.223	.234	.246	.258	.270	.281
,		.008	010.	.023	•03I	030	600.	047	-055	.063	.070	840	212.	.186	.094		.102	.109	.117	.125	177	\$\$7.	.141	.148	.156	.164	.172	.180	.188
	16	.004	800.	.012	910.	030	>*>.	.023	.027	.03I	.035	030	602.	.043	.047		.051	.055	•050	.063	obh	· · ·	-070	-074	.078	.082	.080	000.	.004
Thick- ness of Metal in	Inches.	IG	-100 c	16	-44	5	16	ajoo r	16	-tca	1 <u>6</u> 16	ĸ	2 1	19	roj 44		16	1-100	<u>15</u>	I	Talx	+ 16	-100 , H	1 16	ц т	1 16	1 200 s	1 16	I 2

(90)

NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING ONE 2" HOLE

Thickness.	$\frac{1}{4}$	$\frac{5}{16}$	38	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	<u>5</u> 8	11 16	3 4	$\frac{13}{16}$. 78	$\frac{15}{16}$	I
Deducted.	.19	.23	.28	•33	.38	.42	•47	.52	.56	.61	.66	.70	•75
8×8					7.37	8.26	9.14	10.01	10.88	11.73	12.57	13.42	14.25
7×31				4.07	4.62	5.17	5.70	6.23	6.75	7.26	7.76	8.27	8.75
6×6	• •		4.08	4.73	5.37	6.01	6.64	7.26	7.88	8.48	9.08	9.67	10.25
6×4	• •		3.33	3.85	4.37	4.89	5.39	5.89	6.38	6.86	7.33	7.80	8.25
$5 \times 3\frac{1}{2}$		2.33	2.77	3.20	3.62	4.05	4.45	4.85	5.25	5.64	6.01		
4×4		2.17	2.58	2.98	3.37	3.76	4.14	4.51	4.88	5.23			
4 ×3		1.86	2.20	2.54	2.87	3.20	3.51	3.82	4.13	4.42			
3 ×3	1.25	1.55	1.83	2.10	2.37	2.64	2.89						
$3 \times 2\frac{1}{2}$	I.I2	1.39	1.64	1.89	2.12	2.36							
$2\frac{1}{2} \times 2\frac{1}{2}$	1.00	1.24	1.45	1.67	1.87						•		
$2\frac{1}{2} \times 2$.87	1.08	1.27	1.45	1.62								
2 ×2	.75	.92	1.08	1.23									

NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING TWO " HOLES

Thickness.	+	$\frac{5}{16}$	30	$\frac{7}{16}$	12	$\frac{9}{16}$	5/08	$\frac{11}{16}$	$\frac{3}{4}$	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{15}{16}$	I
Deducted.	.38	.47	.56	.66	•75	.84	.94	1.03	1.13	I.22	1.31	1.41	1.50
8×8			• •	• •	7.00	7.84	8.67	9.50	10.31	11.12	11.92	12.71	13.50
$7 \times 3\frac{1}{2}$	• •		• •	3.74	4.25	4.75	5.23	5.72	6.18	6.65	7.11	7.56	8.00
6×6			3.80	4.40	5.00	5.59	6.17	6.75	7.31	7.87	8.43	8.96	9.50
6×4			3.05	3.52	4.00	4.47	4.92	5.38	5.81	6.25	6.68	7.09	7.50
$5 \times 3\frac{1}{2}$	• •	2.09	2.49	2.87	3.25	3.63	3.98	4.34	4.68	5.03	5.36		
4×4	• •	1.93	2.30	2.65	3.00	3.34	3.67	4.00	4.31	4.62			•
4 ×3	• •	1.62	1.92	2.21	2.50	2.78	3.04	3.31	3.56	3.81			
3 ×3	1.06	1.31	1.55	1.77	2.00	2.22	2.42						
$3 \times 2\frac{1}{2}$.93	1.15	1.36	1.56	1.75	I.94							
$2\frac{1}{2} \times 2\frac{1}{2}$.81	1.00	1.17	I.34	1.50								
$2\frac{1}{2}\times 2$.68	.84	.99	I.I2	1.25								
2 ×2	.56	.68	.80	.90									

NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING THREE $\frac{3}{4}$ " HOLES

Thickness.	38	716	$\frac{1}{2}$	<u>9</u> 16	<u>5</u> 8	11	<u>3</u> 4	$\frac{13}{16}$	78	$\frac{15}{16}$	I
Deducted.	.84	.98	1.13	1.27	1.41	1.55	1.69	1.83	1.97	2.12	2.25
8×8			6.62	7.41	8.20	8.98	9.75	10.51	11.26	12.01	12.75
6×6	3.52	4.08	4.62	5.16	5.70	6.23	6.75	7.26	7.77	8.26	8.75

.

NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING ONE 3" HOLE

THICKNESS.	1/4	$\frac{5}{16}$	<u>3</u> 8	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	<u>5</u> 8	11 16	<u>3</u> 1	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{15}{16}$	I
DEDUCTED.	.22	.27	•33	.38	•44	•49	•55	.60	.66	.71	.77	.82	.88
8×8					7.31	8.19	9.06	9.93	10.78	11.63	12.46	13.30	14.12
$7 \times 3\frac{1}{2}$				4.02	4.56	5.10	5.62	6.15	6.65	7.16	7.65	8.15	8.62
6×6			4.03	4.68	5.31	5.94	6.56	7.18	7.78	8.38	8.97	9.55	10.12
6×4			3.28	3.80	4.31	4.82	5.31	5.81	6.28	6.76	7.22	7.68	8.12
$5 \times 3\frac{1}{2}$		2.29	2.72	3.15	3.56	3.98	4.37	4.77	5.15	5.54	5.90		
4×4	• •	2.13	2.53	2.93	3.31	3.69	4.06	4.43	4.78	5.13			
4 ×3	•••	1.82	2.15	2.49	2.81	3.13	3.43	3.74	4.03	4.32			
3 ×3	1.22	1.51	1.78	2.05	2.31	2.57	2.81						
$3 \times 2\frac{1}{2}$	1.09	1.35	1.59	1.84	2.06	2.29							
$2\frac{1}{2} \times 2\frac{1}{2}$.97	1.20	1.40	1.62	1.81								
$2\frac{1}{2} \times 2$.84	1.04	I.22	1.40	1.56								
2 ×2	.72	.88	1.03	1.18									

NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING TWO $\frac{7}{8}$ " HOLES

THICKNESS.	4	$\frac{5}{16}$	30	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	<u>5</u> 8	$\frac{11}{16}$	$\frac{3}{4}$	$\frac{13}{16}$	$\frac{7}{8}$.	$\frac{15}{16}$	Ι.
DEDUCTED.	•44	.55	.66	.77	.88	.98	1.09	1.20	1.31	1.42	1.53	1.64	1.75
8×8					6.87	7.70	8.52	9.33	10.13	10.92	11.70	12.48	13.25
$7 \times 3\frac{1}{2}$				3.63	4.12	4.61	5.08	5.55	6.00	6.45	6.89	7.33	7.75
6×6			3.70	4.29	4.87	5.45	6.02	6.58	7.13	7.67	8.21	8.73	9.25
6×4			2.95	3.41	3.87	4.33	4.77	5.21	5.63	6.05	6.46	6.86	7.25
$5 \times 3\frac{1}{2}$		2.01	2.39	2.76	3.12	3.49	3.83	4.17	4.50	4.83	5.14		
4×4		1.85	2.20	2.54	2.87	3.20	3.52	3.83	4.13	4.42			
4 ×3 3 ×3	 I.00	1.54 1.23	1.82 1.45	2.10 1.66	2.37	2.64	2.89 2.27	3.14	3.38	3.61			
3^{2}	.07	1.07	1.20	1.45	1.02	1.00							
$\begin{array}{c} 2_{2}\times2_{2}\\ 2_{2}^{1}\times2\end{array}$.62	.76	.89	1.01	1.12								
2 ×2	.50	.60	.70	.79			-						

NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING THREE #" HOLES

THICKNESS.	3/8	$\frac{7}{16}$	12	$\frac{9}{16}$	<u>5</u> 8	16	<u>3</u> 4	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{15}{16}$	I
DEDUCTED.	.98	1.15	1.31	1.48	1.64	1.80	1.97	2.13	2.30	2.46	2.63
8×8			6.44	7.20	7.97	8.73	9.47	10.21	10.93	11.66	12.37
6×6	3.38	3.91	4.44	4.95	5.47	5.98	6.47	6.96	7.44	7.91	8.37

(92)

1 9 5 ++ 3 $\frac{13}{16}$ 7 $\frac{15}{16}$ Thickness + 5 100 7 Т .56 .60 .81 .88 Deducted. 1.00 .25 .31 .38 .50 .63 .75 .94 .44 8×8 7.25 8.12 8.08 9.84 10.60 11.53 12.35 13.18 14.00 7×31 3.96 4.50 5.03 5.54 6.06 6.56 7.06 7.54 8.03 8.50 . . 6×6 3.98 8.28 8.86 9.43 10.00 4.62 5.25 5.87 6.48 7.09 7.69 . . 6×4 6.10 6.66 7.11 7.56 8.00 3.23 3.74 4.25 4.75 5.23 5.72 $5 \times 3\frac{1}{2}$ 2.25 2.67 3.00 3.50 3.91 4.29 4.68 5.06 5.44 5.79 2.87 4×4 2.00 2.48 3.62 3.98 4.34 4.69 • • 3.25 5.03 2.10 2.43 2.75 3.06 3.35 4 ×3 . . 1.78 3.65 3.94 4.22 2.50 2.73 3 ×3 1.19 1.47 1.73 1.99 2.25 1.06 $3 \times 2\frac{1}{2}$ 1.78 2.00 2.22 1.31 1.54 $2\frac{1}{2} \times 2\frac{1}{2}$.94 1.16 1.35 1.56 1.75 23×2 .81 1.00 1.17 1.34 1.50 2 ×2 .60 .84 .98 1.12

NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING ONE 1" HOLE

NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING TWO 1" HOLES

Thickness	1/4	$\frac{5}{16}$	30	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	<u>5</u> 8	$\frac{11}{16}$	3 4	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{15}{16}$	I
Deducted.	.50	.63	.75	.88	1.00	1.13	1.25	1.38	1.50	1.63	1.75	1.88	2.00
0.70					6.2.4		0.6				0		
oxo	• •	• •	• •	• •	0.75	7.55	8.30	9.15	9.94	10.71	11.48	12.24	13.00
$7 \times 3\frac{1}{2}$			• •	3.52	4.00	4.46	4.92	5.37	5.81	6.24	6.67	7.09	7.50
6×6			3.61	4.18	4.75	5.30	5.86	6.40	6.94	7.46	7.99	8.49	9.00
6×4	• •		2.86	3.30	3.75	4.18	4.61	5.03	5.44	5.84	6.24	6.62	7.00
$5 \times 3\frac{1}{2}$	• •	1.93	2.30	2.65	3.00	3.34	3.67	3.99	4.31	4.62	4.92		
4×4		1.77	2.11	2.43	2.75	3.05	3.36	3.65	3.94	4.21			
4 ×3		1.46	1.73	1.99	2.25	2.49	2.73	2.96	3.19	3.40			
3 ×3	.94	1.15	1.36	1.55	1.75	1.93	2.11						
$3 \times 2\frac{1}{2}$.81	.99	1.17	1.34	1.50	1.65							
$2\frac{1}{2} \times 2\frac{1}{2}$.69	.84	.98	1.12	1.25								
$2\frac{1}{2} \times 2$.56	.68	.80	.90	1.00		•						
2 ×2	•44	-52	.61	.68									

NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING THREE 1" HOLES

Thickness Deducted.	38 1.13	$\frac{\frac{7}{16}}{1.31}$	1/2 1.50	1.69 1.69	58 1.88	116 2.06	³ / ₄ 2.25	13 16 2.44	2.63	15 16 2.81	I 3.00
8×8			6.25	6.99	7.73	8.47	9.19	9.90	10.60	11.31	12.00
6×6	3.23	3·75	4.25	4•74	5.23	5.72	6.19	6.65	7.11	7.56	8.00

B

8

NET VALUES OF BEAMS. ABOUT AXIS BB

Deducting one hole in top flange and one hole in bottom flange, using standard gauge and maximum size rivet

1	V	4													ł					
	BE	AM.	яя .Т.	•58 83	DEDU	CT FOR H	OLES.	NET V	ALUES OF E	BAM.	BB	AM.	яя: •Та	•Sਬ ਬਬ	J.F.	DUCT FO	н	NET	VALUES BEAM.	OF
	Depth.	Weight.	DIAMET UIAMET UIAMET	Пілмит Ог Ногі	I	C	ŝ	I	υ	ß	.нтаяП	.тноіяW	DIAMET	DIAMET	H	ပ	ŝ	I	U	-02
	24	100	1~90	I	226.3	201200	18.9	2154.0	1914600	179.5	12	55	~~~	1-400	37.0	65800	6.2	284.0	504800	47.3
	**	95	"	,,	3.9	33	"	2083.3	1851700	173.6	"	50	"	3	"	"	"	266.3	473400	44.4
	**	90	33	"	,,,	23	"	2012.8	1789100	167.7	**	45	"	33	"	"	3	248.7	442100	4 ¹ .4
	**	85	"	"	33	33	,,	1942.3	1726400	161.8	"	40	33	,,	"	33	"	231.9	412300	36.6
-	23	80	3	**	23	22	"	1861.6	1654700	155.1	,,	35	"	"	30.6	54400	5.1	7.701	351400	32.9
	20	100	1-400	н	165.3	176200	16.5	1490.5	1589900	149.1	55	31 ¹ / ₂	3	33	33	3	;	185.2	329300	30.9
	23	95	3	"	23	77	ş;ş	1441.5	1537700	144.2	IO	40	co ≁#	1-400	18.6	39700	3.7	140.1	298800	28.0
	,,	00	"	"	"	"	33	1392.5	1485400	I 39.3	"	35	"	"	33	23	÷	127.8	272700	25.6
10	33	85	"	33	77	;;	9 9	1343.4	1433100	I34.4	"	30	;;	33	,,	22	"	115.6	246600	23.1
<u>.</u>	33	80	33	"	33	"	>>	1301.2	1388100	I 30.2	,,	25	"	"	,,	,,	"	103.5	220800	20.7
	33	75	33	"	144.4	153900	14.4	1124.5	00006011	112.5	¢	li c	(1)	М	0	00000	+	1	004100	L FO
	,,	20	"	"	;;	"	"	1075.5	1147300	107.6	י א	<u>, , , , , , , , , , , , , , , , , , , </u>	4 3	× 3	,, ,,	33300	۲.۰۲ ٬٬	0.16	231/00	1.12
	**	65	33	"	33	33	"	1025.2	1093700	102.6	**	30	33	55	"	. 33	,,	6-10	200200	C-61
	0,	-	٢	1	1 0 0 1	TOTOOT	1	8-20	000000	000		07				;	;	6.11	104000	1.05
	10	20	-100 :	н :	103.1	122100	11.5	010.2	0000000	90.0	:	21	:	:	;	"	3	20.07	168000	15.8
	y y	65	ÿ	3	:	:	:	778.4	922700	80.4	00	Jac	3	Ч	(() F	00110	9	k K	001711	1 4 1
	"	60	"	"	3	33	33	738.7	875600.	82.0	ວະ	203	4 3	w 3	۰. ⁵	004/2	0.7	20.1	001661	14.5
	,,	55	33	,,	23	23	"	692.5	820900	26.9	77	23	**	**	77	77		54.2	144000	13.5
	U F	7	eo -	P.	71.5	004101	2.0	610.7	881300	82.7	33	50 ³	33	"	33	33	"	50.3	134200	12.5
	23	204	÷ 73	ю <u>з</u>		- 3	Ç z	502.I	842100	70.0		10						40.0	124300	0.11
-	13	94	**	;;	33	55	"	564.5	802000	75.3	5	20	NC)00	co[-4+	6.2	18800	1.8	36.0	109800	10.3
	22	900	33	"	33	"	33	5.27.5	764400	7.17	"	172	"	"	"	39	3	33.0	100000	9.4
	. 33		"	3 3	\$6.6	80400	7.5	454.4	646400	60.00	"	15	y,	"	"	33	33	30.0	00916	8.6
	**	20	33	"	22	23	, yy	426.8	001700	57.0	9	$17\frac{1}{4}$	actoo	c0/44	4.1	14700	I.4	22.I	78400	7.3
	73	45	33	33	33	22	33	399.2	567800	53-3	**	$14\frac{3}{4}$	"	,,,	,,	55	,,	6.61	70600	6.6
-	33	42	27	>> .	33	33	33	385.1	547900	51.4	22	124	3	55	23	55	33	17.7	62800	5-9

(94

NET VALUES OF CHANNELS. ABOUT AXIS BB

Deducting one hole in top flange and one hole in bottom flange, using standard gauge and maximum size rivet

CHANNEL. Depth. Weight.		I. OF ET.	I. OF ES.	DEDU	CT FUR HO	LES.	NET V	LUES OF CH	ANNEL
Depth.	Weight.	DIAN RIV	DIAN Hoi	I	С	S	I	С	S
15 "	55 50	3 4 ((78	56.6 "	80400 "	7.5 "	373.6 346.1	531500 492300	49.9 46.2
"	45	"		66	66	66	318.5	453100	42.5
"	40	66	"	59.1	84100	7.9	288.4	410100	38.4
"	35		"	"	**	66	260.9	370900	34.8
"	33	"	"	"	**	66	253.5	360400	33.8
12	40	34	78	27.3	48500	4.5	169.7	301700	28.3
"	35	66	"	**	"	"	152.0	270300	25.4
66	30	"	"	"	" "	66	134.4	238900	22.4
66	25	"	"	66	"	"	116.7	207600	19.5
44	20.50	66	**	66	٤٢	66	100.8	179300	16.9
10	25	34	78	15.2	32400	3.0	75.8	161700	15.2
"	20	"	"	17.5	37300	3.5	61.2	130700	12.2
"	15	"	"	66	66	66	49•4	105400	9.9
9	20	<u>3</u> 4	$\frac{7}{8}$	I2.2	28900	2.7	48.6	115200	10.8
66	15	"	"	13.1	31100	2.9	37.8	89400	8.4
"	13.25	"		"	66	"	34-2	81100	7.6
8	16.25	34	Ţ	9.5	25400	2.4	30.4	81000	7.6
"	13.75	ũ			"	"	26.5	70600	6.6
"	11.25	**	"	"	66	66	22.8	60700	5.7
7	14.75	58	34	5.7	17400	1.б	21.5	65400	6.2
66	12.25	"		"	66	66	18.5	56300	5.3
"	9.75	"	66	"	66	66	15.4	49400	4.4
6	13	58	34	4.1	14700	I.4	13.2	46900	4.4
66	10.50	"	66	66	"	66	11.0	39100	3.6
66	8	66	"		66	66	8.9	31500	2.9

(95)

NET VALUES OF COVER PLATES

About axis BB. The value of d is such that the plates may be used as cover plates for beams and channels

d IN INCHES.	SIZE OF PLATES.	DIAMETER OF RIVET.	DIAMETER OF HOLES.	NET Area of Plates.	NET VALUE OF PLATES. I	d in Inches.	SIZE OF PLATES.	DIAMETER OF RIVET.	DIAMETER OF HOLES.	NET Area of Plates.	NET VALUE OF PLATES. I
- 24	8×1	7	I	14.00	2188.7	15	8×1	3	7	14.25	013.2
	8×7			12.25	1805.8		8×1	÷		12.47	786.4
"	8×3	"	"	10.50	1608.4	"	$8 \times \frac{3}{4}$	"	"	10.60	663.3
"	8×5	u.	"	8.75	1326.8	"	8×5	"	"	8.91	543.9
"	$8 \times \frac{1}{2}$	"	"	7.00	1050.6	"	$8 \times \frac{1}{2}$	"	"	7.13	428.T
						66	$8 \times \frac{3}{8}$	"	"	5.34	315.9
24	7×1	$\frac{7}{8}$	I	12.00	1876.0						
66	$7 \times \frac{7}{8}$	"		10.50	1624.9	15	6×1	$\frac{3}{4}$	$\frac{7}{8}$	10.25	656.8
66	$7 \times \frac{3}{4}$	"	"	9.00	1378.6	66 -	$6 \times \frac{7}{8}$	"	"	8.97	565.6
"	$7 \times \frac{5}{8}$	"	"	7.50	1137.2	"	$6 \times \frac{3}{4}$		"	7.69	477.1
"	$7 \times \frac{1}{2}$	"	"	6.00	900.5	66	$6\times\frac{5}{8}$	"	"	6.41	391.2
						"	$6\times \frac{1}{2}$	"	"	5.13	307.9
20	8×1	78	I	14.00	1544.7	"	$6 \times \frac{3}{8}$	"	"	3.84	227.2
"	$8 \times \frac{7}{8}$	"	"	12.25	1335-3						
"	8×34			10.50	1130.7	12	8×3	4	8	10.69	434.8
	8×58	"	1	8.75	930.8		8×58			8.91	355.2
"	$8 \times \frac{1}{2}$	"		7.00	735.6		8×12			7.13	278.5
							8×8			5.34	204.6
20	6×1	78	I	10.00	1103.3		8×1	"	"	3.56	133.7
"	$6\times\frac{7}{8}$	"	1	8.75	953.8						
"	$6 \times \frac{3}{4}$	1 "		7.50	807.6	12	6×3	4	18	7.69	312.8
"	6×58	"		. 6.25	664.9		0×58		"	6.41	255.5
	$6\times\frac{1}{2}$			5.00	525.4		0×1		"	5.13	200.3
							$6\times\frac{3}{8}$	"		3.84	147.2
18	8×1	8	I	14.00	1264.7		0×1		1"	2.56	96.1
	8×78			12.25	1091.8		0.0		-		_ 0
	8×34			10.50	92.3.3	10	0×3	4	8	0.41	181.0
	8×58			8.75	759.1		0×2			5.13	141.4
	8×1/2			7.00	599.1		0×8			3.84	103.5
-0	E.	7					0×1			2.50	07.3
18	0×1	8	I	10.00	903.3		EVE	2	7	6	x.0 ¢
	OX 8			8.75	779.9	9	0X8	4	8	0.41	148.0
	0×4			7.50	059.5		6X2			5.13	115.7
				0.25	542.2		OX8			3.84	84.5
	0×1			5.00	427.9		OX4			2.50	54.8

(96)

GRAPHIC IN DESIGN OF PLATE GIRDERS

Uniform loading. — The equation for bending moment in inch-pounds for uniform loading is, —

(a) $B = \frac{3}{2} wL^2 - 6 wx^2$,*

where B = bending moment in inch-pounds,

w =load in pounds per lineal foot of girder, including weight of girder,

L = span in feet,

x = distance in feet of section of moments from center of girder.

Equation (a) is a parabola and represents a curve of the form *RAS*, Fig. 1. Such a curve may be made the basis of graphical design, if vertical distances from the curve to the line *RS* represent bending moments for that point in the span.

The equation for moment of resistance is, -

(b)

where

 $M_r = \frac{RI}{e},$

Mr =moment of resistance,

R = safe extreme fiber stress in pounds per sq. in.,

I = moment of inertia,

e = distance in inches of extreme fiber from neutral axis.

* Equation (a) is usually written

$$(a') B = \frac{wL^2}{8} - \frac{wx^2}{2},$$

Where B = bending moment in foot-pounds.

The values of the other terms are the same as in equation (a). Reducing the bending moment to inchpounds by multiplying equation (a') by 12 gives equation (a).

Where the value of x = 0 at the center of the span, equation (a') becomes $B = \frac{wL^2}{8}$, or reducing this value to inch-pounds, $B = \frac{2}{3} wL^2$.

(97)

From equation (b), R and e being constants, I varies directly as M_r . It is then at once possible from a moment diagram such as Fig. 1 exhibits to scale the values of I by changing the scale of the figure by the proper ratio of multiplication.

To make an application of the above to a particular loading and span, plot a curve similar to RAS, Fig. 1, to any convenient scale, using the following values which are computed for a typical parabola.

Let L = 24 feet, w = 20,000 pounds,

then for	x =	0,						В	=	17,280,000
	$x = \pm$	і,	•		•			В	=	17,160,000
	±	2,								16,800,000
	±	3,			•					16,200,000
	土	4,		•			•	• .		15,360,000
	土	5,				•	•		•	14,280,000
	土	6,	•	•	•					12,960,000
	土	7,	•			•	•			11,400,000
	±	8,		•	•	•				9,600,000
	土	9;		+	•		•			7.561,000
	±	10,						•		5,280,000
	土	11,	•		•				•	2 760,000
	土	12,								0

Fig. 2.

Compute the moment at the center of the span from equation (a) which for this point reduces to $B = \frac{3}{2} wL^2$. Conditions of design will give the depth of girder from which the value of e is obtained, whence $I = \frac{M_r e}{p}$ may be computed.

The curve, in connection with the tables for plate girders may now be made the basis of further determinations as follows, see Fig. 2. Draw the radial line xx representing *I* above determined, to a convenient scale. In a similar manner draw yy to represent half the span to a convenient scale. Proceed as in the following case in which the required moment of inertia at the center of the girder is 97,000, and the span 480 inches.

Uniform Loading

(1) Assume that no part of the web acts as flange, and a girder depth of $60\frac{1}{2}$ inches back to back of flange angles. From table No. 49 the value of four $8 \times 8 \times \frac{3}{4}$ angles, $60\frac{1}{2}$ inches back to back, is 31,384, which leaves 65,616 to be provided for in cover plates. From table No. 51 for two 20-inch cover plates on angles $60\frac{1}{2}$ inches back to back, the nearest value is 65,677 for two $1\frac{7}{8}$ inch plates. This can be made up of six $20 \times \frac{5}{8}$ -inch plates, three on top and three on bottom. From the same table the value of two $20 \times \frac{5}{8}$ -inch plates is 21,017,* and two $20 \times 1\frac{1}{4}$ -inch plates is 42,903.

* It is seen from the tables that the value of two plates r_4^1 inches thick is greater than twice the value of two $\frac{1}{6}$ -inch plates with the same distance back to back, since the value of e is greater for the thicker plates; the values should therefore be taken as the value of two plates of the total thickness of each flange plate.

(99)

Represent these values to scale on the line xx and draw lines parallel to RS until they intersect the curve RAS. From these points of intersection draw vertical lines to intersect yy, from which the length of the cover plates may be scaled. The cover plates shown in the figures are allowed to extend beyond this point 18 inches. This distance is an arbitrary figure, and will depend on the distance required to develop the plate, and the inclination of the curve. The web plate and stiffener angles are not considered in this example, as the tables give values for flanges only. The required girder is therefore made up of four angles, $8 \times 8 \times \frac{3}{4}$, $60\frac{1}{2}$ inches back to back, and six cover plates, $20 \times \frac{5}{8}$ inches as flanges.

(2) Assume the same conditions as in example (1), except that $\frac{1}{8}$ of the $60 \times \frac{3}{4}$ inch web plate is considered as flange. See Fig. 3. From table No. 47, the value of a $60 \times \frac{3}{4}$ inch plate with 8×8 inch flange angles is 8801; the value of four $8 \times 8 \times \frac{3}{4}$ inch flange angles $60\frac{1}{2}$ inches back to back is 31,384; as given in example (1), the re-

mainder of 56,460 is made up of cover plates in the same manner as in example (1). Lines are drawn from xx to "*CL* of Girder" parallel to *RS*; from this line all lines parallel to the line representing the value of the web until they intersect the curve *RAS*; the remainder of the operation is the same as in example (1).

(100)

Concentrated Loading

(3) Assume a girder of 480 inches span, supporting two concentrated loads, requiring a moment of inertia shown in Fig. 4 and bounded by the lines *RBS*. The uniform load diagram is bounded by the lines *RCS*. Combining these diagrams by adding the ordinates, for example, AD = CD + BD, the diagram *RAS* is obtained. By laying off to scale on a vertical line *ST* the values of flange angles and cover plates and drawing lines parallel to *RDS*, the length of the cover plates is determined as shown in the figure.

RESISTANCE OF WEB PLATE TO BENDING STRESS

The general formula for moment of resistance is $M_r = RI \div e$. This equation becomes $M_r = RAh \div 6$ for the rectangle shown; where h = depth of web in inches and A = area of section in square inches = bh. Therefore the resistance of a web plate to bending is equivalent to a flange of $\frac{1}{6}$ of the area of the web concentrated at each edge of the web plate.

If it be assumed that an equivalent to $\frac{1}{4}$ of the web be cut away for rivets, the equation takes the form $M_r = RAh \div 8$, or its resistance is equivalent to a flange of $\frac{1}{8}$ of the area of the web concentrated at each edge of the web plate.

The assumption is made in the discussion above that there is no shearing stress in the web, and hence is only applicable at the center of plate girders carrying uniform loads where the web plate is fully spliced.

The following table, giving moment of inertia of web plates, is based on $\frac{1}{8}$ of the area of the web plate as effective flange at the center of gravity of each pair of flange angles.

(101)

MOMENT OF INERTIA OF ONE WEB PLATE FOR PLATE GIRDERS ABOUT AXIS BB

i of area of web considered as effective flange at center of gravity of each pair of flange angles Long leg of angles outstanding

Flange An	GLES.				4	Тніскні	ess of W	'eb in Ii	NCHES.				I OF WEB.
Size.	Back to Back.	14	<u>5</u> 16	38	$\frac{7}{16}$	$\frac{1}{2}$	9 16	<u>5</u> 8	16	34	78	I	DEPTH
$4 \times 3 \times \frac{7}{16}$	18 1	78	97	117	136	156	175	195	214	234	273	312	18
"	241	192	240	289	337	385	433	481	529	577	673	770	24
"	301	385	481	577	673	770	866	962	1058	1154	1347	1539	30
**	36 <u>1</u>	675	844	1013	1182	1351	1520	1688	1857	2026	2364	2701	36
$5 \times 3^{\frac{1}{2}} \times \frac{7}{16}$	181	76	96	115	134	153	172	101	210	220	268	306	18
"	241	190	237	285	332	379	427	474	522	569	664	759	24
"	301	380	476	571	666	761	856	951	1046	1141	1332	1522	30
"	361	669	836	1004	1171	1338	1506	1673	1840	2007	2342	2677	36
**	$42\frac{1}{2}$	1089	1362	1631	1906	2178	2451	2723	2995	3268	3812	4357	42
6×4×1	241	т86	232	270	325	372	418	465	511	558	651	744	24
"	301	375	468	562	656	740	843	037	1030	1124	1311	1408	30
**	361	661	826	001	1156	1321	1486	1652	1817	1982	2312	2642	36
**	42 ¹ / ₂	1077	1347	1616	1886	2155	2424	2694	2963	3232	3771	4310	42
"	$48\frac{1}{2}$	1623	2029	2435	2840	3246	3652	4058	4463	4869	5681	6492	48
6×6×2	241	162	202	244	285	205	266	407	447	488	=60	657	24
"	244	227	203	506	205	525 675	750	844	028	1012	1181	1250	30
"	261	606	758	000	1061	1213	139	1516	1667	1810	2122	2425	36
**	421	1002	1253	1503	1754	2005	2255	2506	2756	3007	3508	4000	42
"	481	1524	1005	2286	2667	3048	3420	3810	4101	4572	5335	6007	48
"	541	2201	2752	3302	3853	4403	4953	5504	6054	6604	7705	8806	54
"	60 ¹ / ₂	3054	3818	4582	5345	6109	6873	7636	8400	9163	10691	12218	60
**	$72\frac{1}{2}$	5369	6711	8053	9395	10737	12079	13421	14764	16106	18790	21474	72
8×8×3	121	045	1181	1417	1652	1880	2125	2362	2508	2834	3306	3770	42
"	481	1448	1810	2172	2534	2806	3258	3620	3082	4344	5068	5702	48
**	541	2104	2630	3156	3683	4200	4735	5261	5787	6313	7365	8417	54
**	601	2934	3667	4401	5134	5867	6601	7334	8068	8801	10268	11735	60
"	721/2	5193	6491	7789	9087	10386	11684	1 2982	14280	15578	18175	20771	72

(102)

MOMENT OF INERTIA OF FOUR ANGLES

ABOUT AXIS BB DEDUCTING ONE HOLE FROM EACH ANGLE One $\frac{1}{3}$ " hole deducted for angles less than $\frac{5}{3}$ " thick One 1" hole deducted for angles over $\frac{9}{16}$ " thick Long legs of angles outstanding

Ī	SIZE OF	TOTAL	SECTION.			BACI	K TO BA	ACK OF A	NGLES IN	INCHES		
	ANGLES.	Gross Weight.	Net Area.	18‡	241	301	361	42 ¹ / ₂	481/2	54 ¹ / ₂	601	$72\frac{1}{2}$
	$4 \times 3 \times \frac{5}{16}$	28.4	7.28	516	947	1409	2202					
I	X 38	34.0	8.60	607	1115	1777	2595					
l	$\times \frac{7}{16}$	39.2	9.96	699	1 286	2053	3098					
L	$\times \frac{1}{2}$	44.4	11.24	783	1444	2307	3372					
L	$\times \frac{9}{16}$	49.2	12.52	868	1602	2562	3747					
L	$5\times3\frac{1}{2}\times\frac{5}{16}$	34.8	9.16	640	1177	1880	2748	3827				
L	X 38	41.6	10.88	756	1393	2227	3256	4536				
Ł	$\times \frac{7}{16}$	48.0	12.60	871	1608	2571	3762	5243				
L	$\times \frac{1}{2}$	54.4	14.24	977	1807	2894	4236	5908				
L	$\times \frac{9}{16}$	60.8	15.92	1087	2013	3226	4725	6591				
L	X 5	67.2	17.16	1166	2162	3467	5081	7091			-	
	6×4×3	40.2	13.12		1661	2660	3804	5432	7148			
L	$X\frac{7}{16}$	57.2	15.20		1017	3072	4501	6280	8267			
	Xł	64.8	17.24		2163	3470	5087	7102	9352			
	$\times \frac{9}{16}$	72.4	19.28		2410	3869	5675	7926	10441			
	$\times \frac{5}{8}$	80.0	20.92		2605	4186	6144	8583	11300			
	×H	87.2	22.88		2834	4559	6695	9359	12337			
ŀ	$\times \frac{3}{4}$	94.4	24.76		3055	4919	7228	10108	13327			
	(6×4 × 3	40.2	13.12		1415	2335	3401	4046	6584			
1		57.2	15.20		1632	2606	4034	5718	7614			
1	X ł	64.8	17.24		1840	3044	4558	6465	8612			
	$\times \frac{9}{16}$	72.4	19.28		2050	3393	4984	7214	9613			
100		80.0	20.92		2216	3672	5504	7812	10413			
-	K XH	87.2	22.88		2400	3897	5996	8517	11357			
CI	$X = \frac{3}{4}$	94.4	24.76		2596	4311	6472	9197	12268			
	6×6 × 3	59.2	16.12		1834	2993	4442	6261	8302	10634	13256	19371
	$\times \frac{7}{16}$	68.8	18.72		2121	3565	5146	7255	9624	12329	15372	22469
	$\times \frac{1}{2}$	78.4	21:24		2397	3919	5824	8214	10899	13967	17417	25463
	$\times \frac{9}{16}$	87.6	23.76		2666	4364	6490	9160	12160	15587	19442	28434
	X 58	96.8	25.92		2897	4747	7064	9973	13242	16978	21180	30984
	$\times \frac{11}{16}$	106.0	28.36		3157	5178	7709	10889	14462	18546	23140	33860
	$\times \frac{3}{4}$	114.8	30.76		3405	5951	8330	11773	15643	20067	25045	36661
	$8 \times 8 \times \frac{1}{2}$	105.6	29.24					10817	14424	18557	23217	34115
	$\times \frac{9}{16}$	118.0	32.76					12093	16130	20757	25974	38176
	× 58	130.8	35.92					13232	17655	22724	28439	41810
	$\times \frac{11}{16}$	143.2	39.36		• •			14468	19309	24859	31117	45759
	$\times \frac{3}{4}$	155.6	42.76		• •			15667	20918	26940	33731	49622
	$\times \frac{13}{16}$	168.0	46.12	• •				16861	22520	29009	36328	53457
	$\times \frac{7}{8}$	180.0	49.40	• •				18021	24076	31021	38855	57190
	× 15	192.0	52.72					19189	25645	33051	41405	60959
	×Ι	204.0	56.00		!			20317	27165	35021	43884	64636

(103)

B------B

MOMENT OF INERTIA OF FOUR ANGLES

ABOUT AXIS BB DEDUCTING TWO HOLES FOR EACH ANGLE Two $\frac{\pi}{2}$ " holes deducted for angles less than $\frac{\pi}{2}$ " thick Two r" holes deducted for angles over $\frac{p}{16}$ " thick Long legs of angles outstanding

SIZE OF	TOTAL	SECTION.			BACK	TO BAC	K OF AN	GLES IN	INCHES.		
ANGLES.	Gross Weight.	Net Area.	181	24 ¹ / ₄	$30\frac{1}{4}$	361	42 ¹ / ₂	48 <u>1</u>	$54\frac{1}{2}$	60 ¹ / ₂	721/2
$4\times3\times\frac{5}{16}$	28.4	6.16	438	802	1278	1864					
× 38	34.0	7.28	515	945	1506	2198					
$\times \frac{7}{16}$	39.2	8.40	591	1086	1732	2530					
$\times \frac{1}{2}$	44.4	9.48	662	1219	1947	2845					
\times^{9}_{16}	49.2	10.56	734	1353	2163	3162					
					-						
$5 \times 3\frac{1}{2} \times \frac{5}{16}$	34.8	8.04	563	1035	1653	2413	3360				
$\times \frac{3}{8}$	41.6	9.56	666	1226	1958	2862	3987				
$\times \frac{7}{16}$	48.0	11.04	765	1411	2255	3298	4595				
$\times \frac{1}{2}$	54.4	12.48	858	1586	2538	3715	5179				
$\times \frac{9}{16}$	60.8	13.96	955	1767	2831	4145	5782				
$\times \frac{5}{8}$	67.2	14.68	1000	1853	2060	4350	6060				
						.00	Í				
6×4 × 3	49.2	11.80		1496	2394	3504	4887	6431			
$\times \frac{7}{16}$	57.2	13.64		1623	2759	4041	5638	7421			
Xł	64.8	15.48		1944	3118	4570	6370	8400			
$\times \frac{9}{16}$	72.4	17.32		2167	3478	5101	7123	0382			
X 5	80.0	18.44		2300	3604	5410	7560	0072			
XH	87.2	20,12		2406	4013	5802	8234	10852			
$\times \frac{3}{4}$	04.4	21.76		2680	4327	6357	8887	11717			
4	24.4	-			-13-1	-001	/	/-/			
(6×4 × 3	40.2	11.80		1278	2105	3145	4454	5027			
	57.2	13.64		1471	2426	3626	5137	6830			
	64.8	15.48		1660	2740	4100	5812	7740			
uts X12	72.4	17.32		1840	3056	4575	6480	8644			
	80.0	18.44		1063	3246	486T	6806	0180			
ъ ×11	87.2	20.12		2130	3526	5284	7501	0008			
$\frac{1}{10}$ $\times \frac{3}{10}$	04.4	21.76		2204	3801	5700	8005	10703			
					0	57		795			
6×6× 3	50.2	14.80		1680	2753	4084	5753	7627	0768	12176	17700
$\times \frac{7}{16}$	68.8	17.16		1050	3182	4723	6656	8828	11308	14007	20602
X ł	78.4	10.48		2205	3601	5348	7540	10003	12816	15080	23360
XIG	87.6	21.80		2453	4011	5062	8412	11164	14308	17845	26006
X	96.8	23.44		2620	4302	6307	0028	11084	15362	10163	28028
XH	106.0	25.60		2860	4684	6060	0830	13065	16751	20808	30575
$\times \frac{3}{4}$	114.8	27.76		3083	5056	7520	10636	14120	18121	22613	33007
				0 0	55	15)	Ŭ			5	00.91
8×8× ½	105.6	27.48		2.			10178	13567	17452	21831	32074
$\times \frac{9}{16}$	118.0	30.80					11382	15178	19528	24433	35905
X 5x	130.8	33.44					12335	16452	21171	26492	38940
×H	143.2	36.60					13471	17973	23134	28953	42568
× 34	155.6	39.76					14587	19470	25060	31384	46160
×13	168.0	42.84					15683	20930	26967	33766	49676
XX	180.0	45.92					16774	22402	28858	36140	53183
×18	192.0	48.96					17845	23840	30717	38476	56636
XI	20.40	52.00					18892	25250	32545	40775	60044

(104)

11

MOMENT OF INERTIA OF FOUR ANGLES

ABOUT AXIS BB, DEDUCTING THREE HOLES FOR EACH ANGLE Three $\frac{1}{2}$ " holes deducted for angles less than $\frac{4}{2}$ " thick Three r" holes deducted for angles over $\frac{1}{2}$ " thick

SIZE OF	TOTAL	SECTION.		I	Васк то	ВАСК С	OF ANGLE	IN INC	HES.	
ANGLES.	Gross Weight.	Net Area.	241	30 ¹ / ₄	36 <u>1</u>	42 ¹ / ₂	48½	54 ¹ / ₂	60 <u>1</u>	72 ¹ / ₂
$\begin{array}{c} 6\times6\times \begin{array}{c} 38\\ \times \begin{array}{c} 7\\ 1 \end{array} \\ \times \begin{array}{c} 2\\ 9\\ 16\\ \times \begin{array}{c} 58\\ \times \end{array} \\ \times \begin{array}{c} 11\\ 16\\ \times \end{array} \\ \times \begin{array}{c} 34\\ 4\end{array} \end{array}$	59.2 68.8 78.4 87.6 96.8 106.0 114.8	13.50 15.65 17.75 19.81 20.94 22.87 24.76	1546 1785 2016 2237 2359 2567 2762	2516 2908 3288 3653 3854 4196 4522	3730 4313 4880 5426 5725 6237 6727	5253 6077 6878 7652 8075 8801 9499	6963 8057 9122 10153 10716 11683 12614	8916 10319 11685 13010 13734 14976 16175	11112 12863 14568 16224 17129 18681 20182	16233 18795 21292 23722 25049 27326 29532
$\begin{array}{c} 8 \times 8 \times \frac{1}{2} \\ \times \frac{9}{16} \\ \times \frac{5}{58} \\ \times \frac{11}{16} \\ \times \frac{3}{4} \\ \times \frac{13}{16} \\ \times \frac{7}{58} \\ \times \frac{15}{16} \\ \times I \end{array}$	105.6 118.0 130.8 143.2 155.6 168.0 180.0 192.0 204.0	25.75 28.81 30.94 33.87 36.76 39.61 42.42 45.23 48.00	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	9549 10661 11431 12486 13507 14523 15519 16511 17466	12726 14211 15240 16652 18022 19383 20719 22050 23335	16366 18280 19606 21427 23199 24956 26683 28403 30069	20469 22868 24529 26813 29037 31242 33410 35570 37666	30067 33599 36046 39412 42699 45953 49154 52347 55453

(105)

0 HFS.

MOMENT OF INERTIA OF

ABOUT AXIS BB, DEDUCTING

d = distance back to back of flange angles A = net area of two plates

Two $\frac{3''}{1''}$ holes deducted for plates less than $\frac{5''}{16''}$ thick (' 1'' '' '' '' '' '' '' '' over $\frac{9}{16''}$ thick

If 4 one-inch holes are deducted, use values of plates 2 inches less in width

N IN	FLA				THICKN	ESS OF P	LATE IN I	NCHES.			
WID	3ACK OF	1	5	38	7	1	9	58	11	34	13
0	A =	= 3.63	4.53	5.44	6.34	7.25	8.16	8.75	0.63	10.50	
-	181	210	200	172	554	627	722	780	862	048	
	241	544	683	824	067	1110	1256	1354	1407	1641	
	201	843	1058	1275	1404	1714	1230	2086	2304	2523	
10	A_	4.13	5.56	6.10	7.22	8.25	0.28	10.00	TT.00	12.00	13.00
10	781				620	725	821	801	087	1084	1182
	241	333 610	444	537	1100	1254	1420	7547	907	1876	2012
	201	019	1204	930	1700	1204	2202	2284	2622	2884	2127
	361	939 1274	1723	2075	2420	2786	2145	2304	2753	4108	4465
T2	A =	- F 12	6 41	7 60	8.07	10.25	J-45	12.50	12.75	TE.00	16.25
12	241	5.13		1.09		10.25	11.55	12.50	13.73	13.00	
12	244	709	900	1100	1307	1570	1775	1934	2130	2345	2553
66	261	1192	1490	1003	2018	2423	2737	2979	3291 460T	3005	5921
	121	1707	2141	25/0	3010	3401	3901	4250	6412	5-35	7622
	422	2045	2930	3535	5270	6152	5340	7542	8217	0007	0880
	402	6 12	7 66	4591	3370	133		754-	-6 -0	78.00	70 50
14	A =	= 0.13	7.00	9.19	10.72	12.25	13.70	15.00	10.50	10.00	19.50
14	244	919	1155	1393	1033	1870	2122	2321	2500	2813	3003
	301	1424	1788	2154	2524	2890	3271	3575	3949	4325	4705
	301	2040	2559	3081	3007	4130	4009	5100	5029	8470	0000
	442	2790	3500	4222	4941	5003	8004	0975	7095	10419	9147
	402	3039	4501	5407	8088	7353	0294	9050	72564	10910	11050
	542 601	4590	575-	8512	0051	9204	10440	11390	12504	13/30	14910
		5051	801	70.60	995-	11390	12041	14012	13444	21.00	22.75
-6	A =	= 7.13	0.91	10.09	12.41	14.25	10.03	17.50	19.25	21.00	22.13
10	244	1009	1343	1020	1900	2183	2408	2700	2994	3282	3574
	301	1057	2080	2500	2930	3309	3000	4171	4007	5040	5409
66	304	2373	2977	3504	4190	6-87	5432	5950	8077	0822	10671
"	422	3233	5205	6282	5/4/	8551	0648	10550	11644	12725	12832
"	541	5330	6600	8046	0408	10777	12152	12205	14658	16027	17402
"	601	6574	8234	0001	11576	13256	14044	16347	18018	19697	21382
18	A	- 8.13	10.16	12.10	14.22	16.25	18.28	20.00	22.00	24.00	26.00
18	361	2706	3304	4087	4785	5487	6104	6800	7505	8215	8030
"	423	3712	4654	5601	6554	7512	8476	0300	10250	11225	12105
**	481	4827	6050	7278	8513	0754	11002	12067	13308	14555	15808
66	541	6080	7628	9175	10720	12280	13857	15195	16752	18317	19888
"	601	7497	9390	11291	13200	15117	17042	18682	20592	22511	24437
"	721	10751	13461	16181	18911	21649	24397	26737	29461	32195	34937

(106)

TWO COVER PLATES

TWO HOLES FROM EACH PLATE

d = distance back to back of flange angles

A = net area of two plates

Two $\frac{1}{3}$ " holes deducted for plates less than $\frac{6}{3}$ " thick "' 1" '' '' '' '' '' '' over $\frac{9}{16}$ " thick If 4 one-inch holes are deducted, use values of plates 2 inches less in width

			Тн	CKNESS	OF PLAT	E IN INC	HES.			
78	$\frac{15}{16}$	I	Ił	11	I 3	I 1/2	158	134	178	2
										-
				1						
T4.00	15.00	16.00								
1081	1280									
2211	1302	1404								
2202	2500	2008								
1825	5049	5900								
17750	18 77	3332	22.50	25.00	25 50	20.00				
17.50	10.75	20.00	22.50	25.00	27.50	30.00				
2703	2975	3190	3025	4008	4520	4980				
4240	4501	4885	5540	0205	0881	7507				
0031	0484	0940	7800	8793	9738	10095				
8232	8840	9,403	10708	11907	13240	14527				
10007	11450	12253	13855	15473	17107	18757				
21.00	22.50	24.00	27.00	30.00	33.00	30.00	39.00	42.00	45.00	48.00
- 3316	3570	3828	4350	4881	5423	5975	6538	7111	7694	8287
5088	5473	5862	6648	7446	8257	9080	9916	10765	11626	12499
7237	7781	8328	9432	10551	11685	12833	13997	15173	16367	17575
9879	10615	11356	12850	14360	15887	17432	18993	20572	22168	23782
12800	13750	14704	16626	18568	20528	22508	24507	26526	28564	30622
10100	17289	18484	20889	23315	25763	28232	30723	33235	35769	38326
19778	21234	22090	25637	28603	31591	34604	37640	40701	43785	46894
24.50	26.25	28.00	31.50	35.00	38.50	42.00	45.50	49.00	52.50	56.00
3868	4165	4466	5074	5695	6327	6971	7627	8295	8976	9668
5935	6385	6839	7756	8687	9633	10594	11569	12558	13563	14582
8444	9077	9716	11004	12310	13632	14972	16329	17703	19095	20504
11525	12384	13248	14991	16753	18535	20337	22159	24001	25863	27745
14934	16041	17154	19397	21662	23949	26259	28591	30946	33324	35725
18783	20170	21564	24370	27201	30056	32937	35843	38774	41731	44713
23074	24772	26478	29910	33369	36856	40371	43913	47484	51082	54709
28.00	30.00	32.00	36.00	40.00	44.00	48.00	52.00	56.00	60.00	64.00
9650	10374	11103	12576	14068	15580	17111	18662	20232	21823	23433
13172	14154	15141	17133	19146	21183	23242	25324	27429	29557	31708
17067	18333	19605	22168	24756	27370	30010	32676	35367	38084	40828
21467	23052	24645	27852	31086	34350	37642	40963	44313	47692	51100
26370	28312	30261	34183	38136	42121	46138	50187	54267	58379	62524
37689	40450	43221	48790	54396	60040	65722	71442	77199	82994	88828

(107) -

TABLE 51 (Continued)

8. 8

MOMENT OF INERTIA OF

ABOUT AXIS BB, DEDUCTING

DF PLATE ICHES.	O BACK NGES S CHES.		d = distance back to back of flange angles A = net area of two plates Two $\frac{1}{r'}$ holes deducted for plates less than $\frac{5}{r'}$ thick $\binom{r'}{r'}$ if if a one-inch holes are deducted, use values of plates 2 inches less in width Thursness or Prate w lyons												
DTH O	FLA FLA			1	THICKNE	SS OF PI	ATE IN IN	NCHES.							
MI	6 B	4	$\frac{5}{16}$	38	$\frac{7}{16}$	1/2	9 16	58	11	34	$\frac{13}{16}$				
20	A =	9.13	11.41	13.69	15.97	18.25	20.53	22.50	24.75	27.00	29.25				
20	361	3039	3812	4590	5374	6162	6956	7649	8443	9242	10046				
"	$42\frac{1}{2}$	4169	5227	6290	7360	8436	9519	10462	11542	12628	13720				
"	$48\frac{1}{2}$	5422	6794	8174	9561	10955	12356	13575	14971	16374	17784				
"	54 ¹ / ₂	6838	8567	10304	12049	13802	15563	17094	18846	20606	22374				
"	$60\frac{1}{2}$	8419	10546	12681	14825	16977	19139	21017	23167	25324	27491				
	$72\frac{1}{2}$	12074	15118	18173	21238	24314	27400	30079	33144	36219	39304				
22	A =	10.13	12.66	•15.19	17.72	20.25	22.78	25.00	27.50	30.00	32.50				
22	361	3372	4230	5093	5963	6838	7719	8499	9381	10269	1163				
"	$42\frac{1}{2}$	4626	5800	6980	8167	9361	10562	11624	12824	14031	15244				
"	48 ¹ / ₂	6016	7539	9070	10609	12156	13710	15084	16635	18193	19760				
"	$54\frac{1}{2}$	7588	9506	11434	13370	15315	17268	18993	20940	22896	24860				
"	$60\frac{1}{2}$	9342	11701	14071	16449	18838	21236	23353	25741	28138	30546				
	$72\frac{1}{2}$	13397	16775	20165	23566	26979	30403	33421	36827	40243	43672				
24	A =	11.13	13.91	16.69	19.47	22.25	25.03	27.50	30.25	33.00	35.75				
24	361	3705	4648	5596	6551	7513	8481	9349	10319	11296	12279				
"	$42\frac{1}{2}$	5083	6372	7669	8974	10286	11605	12787	14107	15434	16769				
"	$48\frac{1}{2}$	6610	8284	9966	11657	13356	15064	16592	18298	20013	21736				
66	54 ¹ / ₂	8337	10445	12563	14690	16827	18974	20892	23034	25185	27346				
**	60 ¹ / ₂	10264	12857	15460	18074	20699	23334	25688	38315	30952	33600				
	72 ¹ / ₂	14720	18432	22150	25893	29643	33406	36763	40509	44268	48039				
26	A =	-						30.00	33.00	36.00	39.00				
26	$42\frac{1}{2}$				• • •			13949	15389	16837	18293				
"	$48\frac{1}{2}$		• • •	• • •				18101	19962	21832	23712				
66	$54\frac{1}{2}$		• • •		• • •			22792	25128	27475	29832				
"	$60\frac{1}{2}$	• • •			• • •			28023	30889	33766	36655				
	$72\frac{1}{2}$		• • •		• • •	• • •		40106	44192	48292	52406				
28	A =	-						32.50	35.75	39.00	42.25				
28	$42\frac{1}{2}$							15112	16671	18240	19817				
"	$48\frac{1}{2}$							19609	21625	23651	25688				
"	54 ¹ / ₂		• • •					24691	27222	29764	32318				
"	60 ¹ / ₂							30358	33463	36580	39709				
	$72\frac{1}{2}$	• • •			• • •			43448	47874	52316	56773				
32	A	-						37.50	41.25	45.00	48.75				
.32	$42\frac{1}{2}$							17437	19236	21046	22866				
"	$48\frac{1}{2}$	• • •						22626	24952	27290	29639				
"	$54\frac{1}{2}$	• • •	• • •		• • •		• • •	28490	31410	34344	37290				
"	$60\frac{1}{2}$	• • •			• • •			35029	38611	42207	45818				
"	72 ¹ / ₂	• • •	• • •	• • •	• • •	• • •	• • •	50132	55240	60365	65507				

41.5

(108)

TWO COVER PLATES

TWO HOLES FROM EACH PLATE

	0			THICKNESS	S OF PLA	TE IN IN	CHES.			
78	$\frac{15}{16}$	I	1 <u>1</u> 8	II	13	I 1/2	1 <u>5</u>	I <u>3</u>	IZ	2
31.50	33.75	36.00	40.50	45.00	49.50	54.00	58.50	63.00	67.50	72.00
10856	11671	12491	14148	15827	17527	19250	20994	22761	24550	26362
14818	15923	17034	19274	21540	23831	26147	28489	30857	33251	35671
19201	20625	22056	24939	27851	30792	33761	36760	39788	42845	45931
24150	25934	27726	31333	34972	38644	42347	46083	49852	53653	57487
29666	31851	34044	38456	42903	47387	51905	56460	61050	65677	70339
42400	45507	48624	54889	61196	67545	73937	80372	86849	93368	99931
35.00	37.50	40.00	45.00	50.00	55.00	60.00	65.00	70.00	75.00	80.00
12062	12968	13879	15720	17585	19475	21388	23327	25290	27278	20201
16465	17692	18926	21416	23933	26478	29052	31655	34286	36946	39634
21334	22916	24506	27710	30945	34213	37512	40844	44208	47605	51034
26833	28815	30806	34814	38858	42937	47052	51203	55391	59614	63874
32963	35390	37826	42729	47670	52652	57672	62733	67833	72974	78154
47111	50563	54026	60987	67995	75050	82152	89302	96498	103742	111034
38.50	41.25	44.00	49.50	55.00	60.50	66.00	71.50	77.00	82.50	88.00
1 3 2 6 8	14265	15267	17292	19344	21422	23527	25659	27818	30005	32227
18111	19461	20819	23557	26326	29126	31958	34820	37714	40640	43605
23467	25208	26957	30481	34040	37634	41264	44928	48629	52337	56145
29517	31697	33887	38296	42744	47231	51758	56324	60930	65576	70269
36259	38929	41609	47001	52437	57917	63440	69006	74616	80271	85977
51823	55619	59429	67086	74795	82555	90368	98232	106148	114116	122145
42.00	45.00	48.00	54.00	60.00	66.00	72.00	78.00	84.00	90.00	96.00
19758	21230	22711	25699	28719	31774	34863	37985	41143	44334	47561
25601	27499	29407	33252	37134	41055	45015	49013	53050	57125	61241
32200	34578	36967	41777	46629	51525	56463	61444	66469	71537	76649
39555	42467	45391	51274	57204	63182	69207	75279	81400	87568	93785
56534	60676	64831	73185	81594	90060	98583	107162	115798	124490	133241
45.50	48.75	52.00	58.50	65.00	71.50	78.00	84.50	91.00	97.50	104.00
21404	22999	24604	27840	31113	34422	37768	41151	44571	48029	51524
27734	29791	31858	36023	40229	44476	48766	53097	57470	61886	66344
34883	37460	40048	45258	50515	55818	61168	66564	72007	77498	83036
42852	46006	49174	55548	61971	68447	74974	81552	88183	94865	101600
61245	65732	70234	79284	88394	97565	106798	116092	125447	1 3 4 8 6 4	144344
52.50	56.25	60.00	67.50	75.00	82.50	90.00	97.50	105.00	112.50	120.00
24697	26538	28389	32123	35899	39717	43578	47481	51428	55417	59450
32001	34374	36759	41565	46418	51319	56268	61265	66311	71406	76550
40250	43223	46209	52221	58287	64405	70578	76805	83085	89420	95810
49444	53084	56739	64093	71505	78977	86508	94099	101749	109459	117230
70667	75844	81039	91481	101993	112575	123228	133952	144746	155613	166550
-	1	1	1					1	1	1

TIMBER COLUMNS, BEAMS, AND FLOORING

STRENGTH OF TIMBER

The following data on strength of timber, pages 110 to 114, are taken from the Report of a Committee of the American International Association of Railway Superintendents of Bridges and Buildings on "Strength of Bridge and Trestle Timbers." The report was made in 1895.

The test data at hand and the summary of criticisms of leading authorities seem to indicate the general correctness of the following conclusions:

(r) Of all structural materials used for bridges and trestles, timber is the most variable as to the properties and strength of the different pieces classed as belonging to the same species; hence it is impossible to establish close and reliable limits for each species.

(2) The various names applied to one and the same species in different parts of the country lead to great confusion in classifying or applying results of tests.

(3) Variations in strength are generally directly proportional to the density or weight of timber.

(4) As a rule, a reduction of moisture is accompanied by an increase in strength; in other words, seasoned lumber is stronger than green lumber.

(5) Structures should be, in general, designed for the strength of green or moderately seasoned lumber of average quality and not for a high grade of well-seasoned material.

(6) Age and use do not destroy the strength of timber unless decay or season checking takes place.

(7) Timber, unlike materials of a more homogeneous nature, as iron and steel, has no well-defined limit of elasticity. As a rule, it can be strained very near to the breaking point without serious injury, which accounts for the continuous use of many timber structures with the material strained far beyond the usually accepted safe limits. On the other hand, sudden and frequently inexplicable failures of individual sticks at very low limits are liable to occur.

(8) Knots, even when sound and tight, are one of the most objectionable features of timber, both for beams and struts. The full-size tests of every experimenter have demonstrated not only that beams break at knots, but that invariably timber struts will fail at a knot or owing to the proximity of a knot, by reducing the effective area of the stick and causing curly and cross-grained fibers, thus exploding the old practical view that sound and tight knots are not detrimental to timber in compression.

(110)

TIMBER COLUMNS, BEAMS, AND FLOORING

(9) Excepting in top logs of a tree or very small and young timber, the heart wood is, as a rule, not as strong as the material farther away from the heart. This becomes more generally apparent, in practice, in large sticks with considerable heart wood cut from old trees in which the heart has begun to decay or been wind shaken. Beams cut from such material frequently season check along middle of beam and fail by longitudinal shearing.

(10) Top logs are not as strong as butt logs, provided the latter have sound timber.

(11) The results of compression tests are more uniform and vary less for one species of timber than any other kind of test; hence, if only one kind of test can be made, it would seem that a compressive test will furnish the most reliable comparative results.

(12) Long timber columns generally fail by lateral deflection or "buckling" when the length exceeds the least cross-sectional dimensions of the stick by 20; in other words, when the column is longer than 20 diameters. In practice the unit stress for all columns over 15 diameters should be reduced in accordance with the various rules and formulæ established for long columns.

(13) Uneven end bearings and eccentric loading of columns produce more serious disturbances than are usually assumed.

(14) The tests of full-size long compound columns, composed of several sticks bolted and fastened together at intervals, show essentially the same ultimate unit resistance for the compound column as each component stick would have if considered as a column by itself.

(15) More attention should be given in practice to the proper proportioning of bearing areas; in other words, the compressive bearing resistance of timber with and across grain, especially the latter, owing to the tendency of an excessive crushing stress across grain to indent the timber, thereby destroying the fiber and increasing the liability to speedy decay, especially when exposed to the weather and the continual working produced by moving loads.

The aim of your committee has been to examine the conflicting test data at hand, attributing the proper degree of importance to the various results and recommendations, and then to establish a set of units that can be accepted as fair average values, as far as known to-day, for the ordinary quality of each species of timber and corresponding to the usual conditions and sizes of timbers encountered in practice. The difficulties of executing such a task successfully can not be overrated, owing to the meagerness and frequently the indefiniteness of the available test data, and especially the great range of physical properties in different sticks of the same general species, not only due to the locality where it is grown, but also to the condition of the timber as regards the percentage of moisture, degree of seasoning, physical characteristics, grain, texture, proportion of hard and soft fibers, presence of knots, etc., all of which affect the question of strength.

(111)

TIMBER COLUMNS, BEAMS, AND FLOORING

Your committee recommends, upon the basis of the test data at hand at the present time, the average units for the ultimate breaking stresses of the principal timbers used in bridge and trestle constructions shown in the accompanying table.

Attention should also be called to the necessity of examining the resistance of a beam to longitudinal shearing along the neutral axis, as beams under transverse loading frequently fail by longitudinal shearing in the place of transverse rupture.

In addition to the ultimate breaking unit stress the designer of a timber structure has to establish the safe allowable unit stress for the species of timber to be used. This will vary for each particular class of structures and individual conditions. The selection of the proper "factor of safety" is largely a question of personal judgment and experience, and offers the best opportunity for the display of analytical and practical ability on the part of the designer. It is difficult to give specific rules. The following are some of the controlling questions to be considered:

The class of structure, whether temporary or permanent, and the nature of the oading, whether dead or live : if live, then whether the application of the load is accompanied by severe dynamic shocks and pounding of the structure. Whether the assumed loading for calculations is the absolute maximum, rarely to be applied in practice, or a possibility that may frequently take place. Prolonged heavy, steady loading, and also alternate tensile and compressive stresses in the same place will call for lower averages. Information as to whether the assumed breaking stresses are based on full-size or small-size tests, or only on interpolated values, averaged from tests of similar species of timber, is valuable in order to attribute the proper degree of importance to recommended average values. The class of timber to be used and its condition and quality. Finally, the particular kind of strain the stick is to be subjected to and its position in the structure with regard to its importance and the possible damage that might be caused by its failure.

In order to present something definite on this subject, your committee presents the accompanying table, showing the average safe allowable working unit stresses for the principal bridge and trestle timbers, prepared to meet the average conditions existing in railroad timber structures, the units being based upon the ultimate breaking unit stresses recommended by your committee and the following factors of safety, viz.:

Tension with and across grain	10
Compression with grain	5
Compression across grain	4
Transverse rupture, extreme fiber stress	6
Transverse rupture, modulus of elasticity	2
Shearing with and across grain	4
(112)	

AVERAGE SAFE ALLOWABLE WORKING UNIT STRESSES IN POUNDS PER SQUARE INCH

RECOMMENDED BY THE COMMITTEE ON "STRENGTH OF BRIDGE AND TRESTLE TIMBERS," AMERICAN ASSOCIATION OF RAILWAY SUPERIN-

TENDENTS OF BRIDGES AND BUILDINGS, FIFTH ANNUAL CONVENTION, NEW ORLEANS, OCTOBER, 1895

-		TENS	ION.	Ŭ	OMPRESSION	ч. Ч.	TRANSVER	SE RUPTURE.	SHR.	ARING.
	Variation of the Manual			With	Grain.		P. when and			
	LIND OF LIMBER.	With Grain.	Across Grain.	End Bearing.	Columns under 15 diameters.	Across Grain.	Fiber Stress.	Modulus of Elasticity.	With Grain.	Across Grain.
	Factor of safety	IO	0I	S	S	4	9	2	4	4 /
	White oak	1000	200	1400	000	500	1000	550000	200	1000
	White pine	200	50	1100	200	200	200	500000	001	500
()	Southern, longleaf, or Georgia yellow pine	1200	ő	1600	1000	350	1200	850000	150	1250
113	Douglas, Oregon, and Washington fir or pine:									
)	Yellow fir	1200	•	Ιίοο	1200	300	1100	700000	ıSo	•
	Red fir	1000	•	•	•	•	800		•	•
	Northern or shortleaf yellow pine	006	So	1200	800	250	1000	600000	001	1000
	Red pine	000	50	1200	800	200	800	600000	•	•
	Norway pine.	800	•	I 200	800	200	200	600000	•	•
	Canadian (Ottawa) white pine	0001	•	•	1000	•	•		100	•
	Canadian (Ontario) red pine	0001	•	•	1000	•	800	200000	001	•
	Spruce and Eastern fir	800	50	1200	800	200	200	600000	100	750
	Hemlock	600	•		800	пSo	600	450000	100	600
	Cypress	600		1200	800	200	800	450000	•	•
	Cedar	800	•	1200	800	200	800	350000	•	400
	Chestnut	000	•	•	1000	250	800	500000	тSo	400
	California redwood	700	•	•	800	200	750	350000	001	•
	California spruce	•	•	•	800	•	800	600000	•	•

AVERAGE ULTIMATE BREAKING UNIT STRESSES IN POUNDS PER SQUARE INCH

RECOMMENDED BY THE COMMITTEE ON "STRENGTH OF BRIDGE AND TRESTLE TIMBERS," AMERICAN ASSOCIATION OF RAILWAY SUPER-INTENDENTS OF BRIDGES AND BUILDINGS, FIFTH ANNUAL CONVENTION, NEW ORLEANS, OCTOBER, 1895

RING.		Across Grain.	4000	2000	5000		• • •		4000		••		•	3000	2500		1500	1500	• • •	•
SHEA		With Grain.	800	400	600		600	•	400	•	•	350	400	400	350	•		600	400	
NSVERSE UPTURE.		Modulus of Elasticity.	I 100000	1100000	1700000		1400000	•	1200000	1200000	1200000	•	1400000	I 200000	000006	0000006	200000	1000000	200000	I 200000
T _{RA} R ₁		Extreme Fiber Stress.	6000	4000	2000		6500	5000	6000	5000	4000	•	5000	4000	3500	5000	5000	5000	4500	5000
•Ni		Across Grain.	2000	800	1400		1200	• • •	1000	800	800		•	200	600	200	200	006	800	•
COMPRESSIC	Grain.	Columns Under 15 Diam- eters.	4500	3500	5000		6000	•	4000	4000	4000	5000	5000	4000	4000	4000	4000	5000	4000	4000
	With	End Bearing.	2000	5500	8000		8000	•	6000	6000	6000	•		6000	•	6000	6000	•	•	•
.NOI		Across Grain.	2000	500	600				500	500		•	•	500		•	•	•	•	•
TENS	1.1	With Grain.	I 0000	2000	12000		12000	10000	δοοο	0006	8000	I 0000	10000	8000	6000	6000	8000	0000	. 7000	
		KIND OF TIMBER.	White oak	White pine	Southern longleaf, or Georgia yellow pine	Douglas, Oregon, and Washington fir or pine	Yellow fir	Red fir	Northern or shortleaf yellow pine	Red pine	Norway pine.	Canadian (Ottawa) white pine	Canadian (Ontario) red pine	Spruce and Eastern fir	Hemlock	Cypress	Cedar	Chestnut	California redwood	California spruce

SAFE LOADS FOR WOOD COLUMNS

IN POUNDS PER' SOUARE INCH OF CROSS-SECTION

The following safe loads are obtained from the formula

$$P = F 700 + 15 c$$

$$700 + 15c + c^2$$

where P = allowable working stress in lbs. per sq. in. for long columns.

F = allowable working stress in lbs. per sq. in. for short columns.

c = unbraced length in inches divided by least cross-sectional dimension in inches.

		VALU	es of F					VALUE	s of F.		
С	700	800	900	1000	1200	С	700	800	900	1000	1200
I	699	799	899	999	1198	21	488	558	627	697	837
2	696	796	895	995	1193	22	476	544	612	680	816
3	692	790	889	988	1186	23	465	531	598 .	664	797
4	686	783	881	979	1175	24	454	518	583	648	777
5	678	775	872	969	1162	25	443	506	569	632	759
6	669	765	861	956	1148	26	432	494	555	617	741
7	660	754	848	943	1131	27	422	482	542	603	723
8	649	742	835	928	1113	28	412	471	529	588	706
9	638	729	820	912 [.]	1094	29	402	460	517	574	689
10	626	716	805	895	1074	30	393	449	505	561	673
II	614	702 '	790	877	1053	32	375	428	482	535	642
12	602	688	773	859	1031	34	358	409	460	511	614
13	589	673	757	841	1009	36	342	391	440	489	587
14	576	658	741	823	987	38	328	374	421	468	561
15	563	644	724	804	965	40	314	359	403	448	538
16	550	629	707	786	943	42	301	344	387	430	516
17	537	614	691	768	921	44	289	330	371	413	495
18	525	600	675	750	900	46	278	317	357	397	476
19	512	585	659	732	878	48	267	305	343	381	458
20	500	571	643	714	857	50	257	294	330	367	441
						60	215	246	277	308	369
						70	184	211	237	263	316

Example 1. Required the size of a Southern Pine column capable of supporting a direct load of 40,000 pounds, the unbraced length of the column being 16 feet. Solution: Assuming an 8×8 , $c = 102 \div 8 = 24$, F = 1000 for Southern Pine. From the above table for these values of c and F, P = 648. Let P' = 10 ad applied in pounds per square inch, A = area of cross-section of column in square inches, W = total load applied in pounds, then $P' = W \div A = 40,000 \div 64 = 655$. Since the load applied is less than the allowable load, the column is safe. Example 2. Required the size of a Southern Pine column capable of supporting a load of 40,000 pounds, so applied as to produce a bending moment of 18,000 inch-pounds, the unbraced length of the column is 16 feet. Solution: Assuming an 8×10 , c = 24, F = 1000, P = 648, A = 80. Placing the column is the two will be effective in resisting bending, I = 667, e = 5. Then $P' = \frac{W}{A} + \frac{Me}{I} = \frac{40,000}{80} + \frac{18,000 \times 5}{667} = 635$. Since P' is less than P, the column is safe.

(115)

SAFE LOADS (UNIFORMLY DISTRIBUTED) FOR BEAMS 1" THICK

Based on extreme fiber stress of 1000 pounds per square inch. The table is for total uniform loads in pounds, for beams one inch thick. The values are for an actual depth of $\frac{1}{4}$ inch less than the nominal depth, or a 4-inch beam is reduced to $3\frac{3}{4}$ inches deep.

N IN ET.						No	DMINAL	Depth	OF BEA	м.				
SPA1 FE	4	5	6	7	8	9	10	12	14	16	18	20	22	24
4	301	627	018	1265	1668	2127	2640	3835	5268	6801	8752	10835	13141	15668
5	313	501	735	1012	1334	1701	2112	3068	4201	5512	7000	8668	10512	12535
6	260	418	612	844	1112	1418	1760	2557	3512	4594	5834	7224	8760	10446
7	223	358	525	723	953	1215	1508	2191	3001	3937	5001	6191	7509	8953
8	195	313	459	633	834	1063	1320	1918	2634	3446	4375	5418	6570	7834
9	174	279	408	563	741	944	1173	1704	2341	3063	3889	4815	5840	6964
10	156	251	367	506	667	851	1056	1534	2100	2756	3500	4334	5256	6267
II	142	228	334	460	607	774	960	1394	1910	2505	3182	3940	4778	5698
12	130	209	306	422	556	709	880	1278	1756	2297	2917	3612	4380	5223
13	120	193	283	389	513	654	812	1180	1616	2120	2692	3333	4043	4821
14	112	179	262	362	477	608	754	1095	1500	1968	2500	3095	3754	4477
15	104	167	245	338	445	567	704	1023	1400	1838	2333	2889	3504	4178
- 6														
10	98	157	230	310	417	532	000	959	1317	1723	2188	2709	3285	3917
17		147	210	298	393	500	021	902	1230	1021	2059	2549	3092	3087
10		139	204	201	371	472	507	8052	1170	1531	1944	2408	2920	3402
19		132	193	200	351	440	550	007	1100	1451	1042	2201	2707	3299
20		125	104	253	334	425	520	107	1054	1370	1/50	2107	2020	3134
21			175	241	218	105	502	720	TOOO	1312	1667	2062	2502	2084
22			167	230	302	387	480	607	055	1253	1501	1070	2380	2840
23			160	220	200	370	450	667	017	1108	1522	1884	2286	2724
24			153	211	278	354	440	630	878	1140	1458	1806	2100	2611
25				203	267	340	423	614	840	1103	1400	1734	2102	2507
					1		1					101		
26				195	257	327	406	590	808	1060	1346	1667	2022	2411
27				187	247	315	391	568	780	1021	1296	1605	1947	2321
28				181	238	304	377	548	750	984	1250	1548	1877	2238
29					230	293	364	529	724	950	1207	1494	1812	2164
30			• •		222	283	352	511	700	919	1167	1444	1752	2089
						1								

To obtain the safe load concentrated at the center of beam, divide the safe load given in the above table by two.

(116)

TABLE 56 (Continued on p. 118)

SAFE LOADS (UNIFORMLY DISTRIBUTED) FOR BEAMS

Based on an extreme fiber stress of roco pounds per square inch. The table is for total uniform loads in pounds, for beams of the sizes and spans given below. The values are for an actual depth of 4 inch less than the nominal depth, or a 4 inch beam is taken as actually 34 inches deep.

k = depth of beam in inchesb = thickness of beam in inchesSpan = simple span in feet

	9	23010	18410	15340	13150	11510	10220	9200	8360	7670	7080	6570	6140	5750	5410	5110	4840	4600	4380	4180	4000	3830	3680	3540	3410	3290	3170	3070
12	4	15340	12270	10230	8760	7670	6820	6140	5580	5110	4720	4380	4090	3840	3610	3410	3230	3070	2920	2790	2670	2560	2460	2360	2270	2190	2120	2040
	3	11510	9200	7670	6570	5750	SIIO	4600	4180	3830	3540	3290	3070	2880	2710	2560	2420	2300	2190	2090	2000	1920	1840	1770	1700	1640	1590	1530
	3	7670	6140	5110	4380	. 3840	3410	3070	2700	2560	2360	2190	2050	1920	1800	1700	1610	1530	1460	1390	1330	1280	1230	1180	1140	1100	1000	1020
	4	10560	8450	7040	6030	5280	4690	4220	3840	3520	3250	3020	2820	2640	2480	2350	2220	2110	2010	1920	1840	1760	1690	1620	1560	1510	1460	1410
10		7920	6340	5280	4520	3960	3520	3170	2880	2640	2440	2260	2110	1980	1860	1760	1670	1580	ISIO	1440	1380	1320	1270	1220	1170	1130	0001	1000
	2	5280	4220	3520	3020	26.40	2350	2110	1920	1760	1620	1510	1410	1320	1240	1170	OIII	1060	OIOI	900	920	880	850	810	780	750	730	200
	4	6670	5340	4450	3810	3340	2960	2670	2430	2220	2050	0161	1780	1670	1570	1480	1400	1340	1270	1210	1160	OIII	1070	1030	066	950	920	890
8	3	5000	4000	3340	2860	2500	2220	2000	1820	1670	1540	1430	1340	1250	1180	OIII	1050	1000	950	010	870	830	800	770	740	710	690	040
	3	3340	2670	2220	0161	1670	1480	1330	1210	OIII	1030	950	890	830	290	740	200	670	640	010	580	560	530	510	490	480	460	440
	3	2750	2210	1840	1580	1380	1220	1100	1000	920	850	290	740	690	650	010	580	550	530	500	480	460	•	•	•	•	•	•
9	2	1840	1470	1220	1050	920	820	730	670	010	570	520	490	460	430	410	390	370	350	330	320	310	•	•	•	•	•	•
1 4	b 2	780	630	520	450	390	350	310	280	260	240	220	210	200	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	SPAN.	4	10	9	-	00	0	IO	II	12	13	14	SI (10	17	100	19	20	21	22	23	24	25	26	27	28	29	30

(See Note at foot of Table on page 118.)

TABLE 56 (Continued)

SAFE LOADS (UNIFORMLY DISTRIBUTED) FOR BEAMS

See Note on page 117.

If it is required to obtain the safe load using any other fiber stress, multiply the total uniform load on the beam by the extreme fiber stress used in the table and divide this product by the required extreme fiber stress. The beam required to support the load thus obtained may be read directly from the table. A beam having a span of 10 feet, supporting a total uniform To obtain the safe load concentrated at the center of a beam, divide the safe load given in the above table by two. oad of 2400 pounds, at an extreme fiber stress of 800 pounds per square inch is determined as follows:

- = 3000 2400 X 1000

From the table a load of 3000 pounds on a 10 foot span requires a 2×12 .

(118)

SAFE BENDING MOMENTS IN FOOT POUNDS FOR BEAMS 1" THICK

Based on actual depth of $\frac{1}{4}$ inch less than nominal depth, or a 4-inch beam is reduced in value to $3\frac{2}{4}$ inches

24	4701	5484	5876	6267	7834	8018	9401
22	3942	4599	4928	5250	6570	7227	7884
20	3251	3792	4063	4334	5418	5959	6501
18	2626	3063	3282	3501	4376	4813	5251
91	2067	2412	2584	2756	3445	3790	4134
14	1576	1838	6961	2101	2626	2888	3151
12	1151	1342	1438	1534	1918	2109	2301
0I	792	924	066	1056	1320	1452	1584
6	638	744	798	851	1063	0/11	1276
∞	Sor	584	626	667	834	918	IOOI
4	380	443	475	506	633	969	759
9	276	321	344	367	459	505	551
S	188	219	235	25I	313	345	376
4	211	137	146	156	195	215	234
еб• 1 кем век с1 кем кем	600	200	750	800	1000	1100	1200
	Кременски колородици колородици колородици колородици колородици колородици колородици колороди колороди колороди колороди колородици колороди колоро Колороди колороди	Remericing A 5 6 7 8 9' 10 12 14 16 18 20 22 24 A FREE 0 117 188 276 380 501 638 792 1151 1576 2067 2626 3251 3942 4701	R = 10 + 10 I = 10 I	R = 10 + 10 I = 10 I	R M K K K K K K K K K K K K K K K K K K	R M K K K K K K K K K K K K K K K K K K	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

bending. Safe extreme fiber stress of Southern Pine is 1200 pounds per square inch. 7200 $\div 2 = 3600$, which is the required bending moment for beam of 1 inch thickness. Opposite 1200 in the above table under 16 inch depth, we obtain 4134, which is the next higher value. Therefore a 2 × 16 is safe, if determined by Example. Given a bending moment of 7200 foot-pounds, it is required to find the depth of a Southern Pine beam of 2 inches thickness to safely sustain this extreme fiber stress.

BENDING MOMENTS IN FOOT-POUNDS

For the following uniform loads, the joists being spaced 24 inches centers

1.1	L						TROPT	IN LOON	DS FRK C	VUARE I	·1.00					
AaS	IS	20	25	30	40	50	60	04	75	80	100	125	150	175	200	250
4	60	80	I 00	120	160	200	240	280	300	320	400	200	600	700	800	1000
u)	94	125	156	188	250	313	375	438	469	200	625	781	938	1004	1250	1563
-	5 I 135	180	225	270	360	450	540	630	675	720	000	1125	1350	1575	1800	2250
	7 I 184	245	300	368	490	613	735	858	616	980	1225	1531	1840	2144	2450	3000
	3 240	320	400	480	640	800	960	1120	I 200	1280	1600	2000	2400	2800	3200	4000
5	304	405	500	608	810	IOI3	1215	1418	1519	1620	2025	253I	3038	3544	4050	5063
Ĩ	375	500	025	750	000I	1250	1500	1750	1875	2000	2500	3125	3750	4375	5000	6250
		,		(
I I	t 454	605	750	908	1210	1513	1815	2118	2269	2420	3025	3781	4538	5294	6050	7563
Ï	2 540	720	000	1080	I440	1800	2160	2520	2700	2880	3600	4500	5400	6300	7200	0000
H	3 634	845	1056	I 268	1690	2113	2535	2958	3169	3380	4225	5281	6338	7.394	8450	10563
IA	4 735	980	1225	1470	1960	2450	2940	3430	3675	3920	4000	6125	7350	8575	9800	12250
H	5 844	1125	1406	1688	2250	2813	3375	3938	4219	4500	5625	7031	8438	9844	11250	14063
H	006	1280	1600	1920	2560	3200	3840	4480	4800	5120	6400	8000	9600	11200	12800	16000
H	7 I 1084	1445	1806	2168	2890	3613	4335	5058	5419	5780	7225	0031	10838	12644	14450	18063
31	3 I215	1620	2025	2430	3240	4050	4860	5670	6075	6480	8100	IOI25	12150	14175	16200	20250
I	1354	1805	2256	2708	3610	4513	5415	6318	6260	7220	0025	11281	13538	I5704	18050	22563
20	D I500	2000	2500	3000	4000	5000	0000	7000	7500	8000	10000	12500	I 5000	17500	20000	25000
												,	•			,
2	t 1654	2205	2756	3308	4410	5513	6615	7718	8269	8820	II025	13781	16538	19294	22050	27563
2	2 ISI5	2420	3025	3630	4840	6050	1260	8470	9075	9680	12100	15125	18150	21175	24200	30250
5	3 I984	2645	3306	3968	5290	6613	7935	9258	6166	10580	13225	16531	19838	23144	26450	33063
24	1 2160	2880	3600	4320	5760	7200	8640	10080	10800	11520	14400	18000	21600	25200	28800	36000
5	5 2344	3125	3906	4688	6250	7813	9375	10938	61711	12500	15625	19531	23438	27344	31250	39063
-		0				c		c			,					
5	2535	3300	4225	5070	0200	0450	IO140	11830	12075	13520	10900	21125	25350	29575	33800	42250
5	7 2734	3045	4550	5408	7290	9113	10935	12758	13669	14580	I8225	22781	27338	31894	36450	45563
56	3 2940	3920	4900	5880	7840	9800	11760	13720	14700	15680	19600	24500	29400	34300	39200	49000
50	3154	4205	5256	6308	8410	10513	12615	14718	15769	16820	21025	26281	31538	36794	42050	52563
30	3375	4500	5625	6750	0000	11250	13500	15750	16875	18000	22500	28125	33750	39375	45000	56250
	1															
	Exam	ple. Giv	ven a be	am supi	porting a	uniform	load of	So pound	s per squ	are foot,	having a	span of 1	r6 feet, sl	baced 4 fe	et 6 inche	es centers,
2 fee	t centers.	, we hav	te 3200 fe	oot-pour	nds. Fo	oot-pound	5 inches	n the abo	ve table i	or 10 100.	t span and t is 54 ÷	1 50 poun 24 × 320	10 = 7200	uare 1001	with peau inds.	ns spaced
														•		

(120)

THICKNESS OF WOOD FLOORING

Based on a safe extreme fiber stress of 1000 pounds per square inch, the flooring assumed in simple spans. To the thickness given below add $\frac{1}{4}$ to obtain the nominal thickness.

N IN (ES.					Ţ	Jnifor	M LOA	d in P	OUNDS	PER S	UARE	F оот.				
SPAI	15	20	25	30	40	50	60	70	75	80	100	125	150	175	200	250
12		.12	.14	.15	.17	.10	.21	.23	.24	.25	.27	.21	.21	.36	.30	.43
16	.14	.16	.18	.20	.23	.26	.28	.31	.32	.33	.37	.41	•45	.48	.52	.58
18	.16	.18	•2I	.23	.26	.29	.32	•34	.36	•37	·4I	.46	.50	•54	.58	.65
24	.21	.25	.27	.30	.35	•39	.42	.46	•47	•49	.55	.61	.67	.72	•77	.87
30	.27	.31	•34	.38	.43	.48	.53	•57	-59	.61	.68	•77	.84	.91	•97	1.08
26							6.	60		-	8.0				6	
12	.32	•31	•41	•45	·52	68	.04	.09	82	•73	.02	.92 1.07	1.01	1.09	1.10	1.30
48	.42	.40	.40	.60	.60	.00	.85	.02	.05	.08	1.10	1.22	1.34	1.45	1.55	1.73
60	.53	.61	.68	.75	.87	.97	1.06	1.15	1.19	1.22	1.37	1.53	1.68	1.81	1.94	2.17
72	.64	.73	.82	.90	1.04	1.16	1.27	1.37	1.42	1.47	1.64	1.84	2.01	2.17	2.32	2.60
84	.74	.86	.96	1.05	1.21	1.36	1.48	1.60	1.66	1.71	1.92	2.14	2.35	2.54	2.71	3.03
96	.85	.98	I.IO	1.20	1.39	1.55	1.70	1.83	1.90	1.96	2.19	2.45	2.68	2.90	3.10	3.46

To obtain the required thickness for loads concentrated at center of span, divide the concentrated load per foot of width of flooring by one-half of the span in feet ; the resulting value is the equivalent uniform load in pounds per square foot.

The above values were obtained from the following formula:

Let h = thickness of flooring in inches,

w = uniform load in pounds per square foot,

l = simple span in inches,

 $h = \sqrt{\frac{l'w}{192000}}$

R = safe extreme fiber stress in pounds per square inch = 1000 in above table.

Then

(121)

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

P TAY

וזי קרזיזו

AN INITIAL FINE OF 25 CENTS WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY OVERDUE.

jurch use net YC 13412 Jample (39235 As & L Mitt

